2017 | 342 | 115-130
Article title

Using recommendation approaches for ratings matrixes in online marketing

Title variants
Zastosowanie zaleceń rekomendacji do oceny macierzy w marketingu online
Languages of publication
The main objective of the study is detecting of advantages and disadvantages of different algorithms which are used when building recommender system. Recommender systems became so popular because of active development of online marketing and increase of sales through the Internet. Development and implementation of a strategy for recommending products cause effective use of resources and dynamic sales of the company. Recommender systems are one of the most effective tools: systems, which are built using memory-based algorithms, and systems with model-based algorithms. The best performance was shown by Matrix Factorization techniques with Stochastic Gradient Descend. When selecting a recommender system it is advisable to consider the purpose of use, product features, specifications and availability of customer data on their preferences. The use of one of the described recommender system will improve the efficiency of the product marketing.
Głównym celem badania jest wykrycie zalet i wad różnych algorytmów wykorzystywanych podczas budowania systemu rekomendacji. Systemy rekomendujące stały się tak popularne ze względu na aktywny rozwój marketingu internetowego i wzrost sprzedaży za pośrednictwem Internetu. Opracowanie i wdrożenie strategii rekomendowania produktów powoduje efektywne wykorzystanie zasobów firmy i dynamiczną sprzedaż. Systemy rekomendujące są jednym z najbardziej efektywnych narzędzi – systemów, które są zbudowane przy użyciu algorytmów opartych na pamięci i systemów z algorytmami opartymi na modelach. Najlepszą wydajność pokazały techniki Matrix Factorization ze Stochastic Gradient Descend. Wybierając system rekomendujący, należy wziąć pod uwagę cel używania, cechy produktu, specyfikacje i dostępność danych klienta według ich preferencji. Korzystanie z jednego z opisanych systemów rekomendujących poprawi efektywność marketingu produktów.
Physical description
  • National University of Life and Environmental Science of Ukraine. Department of Economic Cybernetics
  • National University of Life and Environmental Science of Ukraine. Department of Economic Cybernetics
  • Breese J.S., Heckerman D., Kadie C. (1998), Empirical Analysis of Predictive Algorithms for Collaborative Filtering [in:] Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann Publishers Inc., pp. 43-52.
  • Gorakala S.K., Usuelli M. (2015), Building a Recommendation System with R, Packt Publishing Ltd.
  • Hahsler M. (2011), Recommenderlab: A Framework for Developing and Testing Recommendation Algorithms, Southern Methodist University.
  • Hauger S., Tso K.H., Schmidt-Thieme L. (2008), Comparison of Recommender System Algorithms Focusing on the New-Item and User-bias Problem [in:] Ch. Preisach, H. Burkhardt, L. Schmidt-Thieme, R. Decker (eds.), Data Analysis, Machine Learning and Applications, Springer, Berlin–Heidelberg, pp. 525-532.
  • Huang Z., Zeng D., Chen H. (2007), A Comparison of Collaborative-Filtering Recommendation Algorithms for e-Commerce, “IEEE Intelligent Systems”, No. 22(5), pp. 68-78.
  • Lee J., Sun M., Lebanon G. (2012), A Comparative Study of Collaborative Filtering Algorithms, arXiv preprint, arXiv:1205.3193.
  • Lemire D., Maclachlan A. (2005), Slope One Predictors for Online Rating-Based Collaborative Filtering [in:] Proceedings of the 2005 SIAM International Conference on Data Mining, Society for Industrial and Applied Mathematics, pp. 471-475.
  • Ricci F., Rokach L., Shapira B. (2015), Recommender Systems: Introduction and Challenges [in:] F. Ricci, L. Rokach, B. Shapira, P.B. Kantor (eds.), Recommender Systems Handbook, Springer, US, pp. 1-34.
  • Vozalis M., Markos A., Margaritis K. (2009), Evaluation of Standard SVD-based Techniques for Collaborative Filtering [in:] Proceedings the 9th Hellenic European Research on Computer Mathematics and its Applications.
  • Zhang S., Wang W., Ford J., Makedon F., Pearlman J. (2005), Using Singular Value Decomposition Approximation for Collaborative Filtering [in:] “E-Commerce Technology”, July, CEC 2005, Seventh IEEE International Conference, pp. 257-264.
  • [www 1] MovieLens project, (access: 2016).
  • [www 2] Reproducible сode for research: (access: 2016).
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.