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Abstract

In this paper, we study the newsvendor problem with various degrees of
risk tolerance. We consider bicriteria optimization where the first objective is
the classical maximization of the expected profit and the second one is the
satisficing-level objective. The results depend on the risk coefficient and are
different for a risk-neutral, a risk-averse, and a risk-seeking retailer. We find
the compromise solution of the bicriteria newsvendor problem numerically,
since the two objectives are mutually conflicting. The formulas obtained are
illustrated with exponentially distributed demand.
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1 Introduction

The single-period newsvendor problem is one of the most fundamental inventory
models (cf. Silver et al., 1998). In the classical version of this problem the objec-
tive is to maximize the expected profit, but many other objectives can be used.
A survey of this topic has been performed recently by Qin et al. (2011). Some-
times, it is more relevant to consider the retailer’s risk tolerance. In the news-
vendor model, various degrees of risk can be assumed. The most popular meas-
ures assuming risk aversion are Value-at-Risk (VaR) and Conditional Value-at-
Risk (CVaR). Lately, Teunter et al. (2013a) have studied how the capacity for
uncertainty influences inventory decisions of a risk-averse newsvendor using the
VaR and CVaR criteria. These criteria have also been studied by Teunter et al.
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(2013b), but with uncertainty in the shortage cost. Moreover, in Teunter et al.
(2014), under the CVaR criterion, the authors obtain the optimal quantity and
pricing decisions under both quantity and pricing competition. The most recent
papers in this field are, among others, Ozler (2009), Wang and Webster (2009),
Xinshenga et al. (2015), Rubio-Herrero et al. (2015), Dia and Mengb (2015),
Ray and Jenamani (2016) and Ye and Sun (2016).

The degree of risk tolerance is studied in Arcelus et al. (2012b) and Raza et al.
(2017), too. In these papers, the authors consider the newsvendor model with ran-
dom and price-dependent demand. Among other objectives, they use the risk coeffi-
cient into the satisficing-level objective. In general, the satisficing-level objective is
defined as the maximization of the probability of the event that the profit is greater
than or equal to the prespecified target profit. The satisficing-level objective in the
newsvendor problem is treated, for instance, in Kabak and Shiff (1978), Lau (1980),
Li et al. (1991), Yang (2011) or Pinto (2016). The satisficing-level objective with
a moving target and price independent demand is explored in Parlar and Weng
(2003), Arcelus et al. (2012a) and Bieniek (2016), but for a risk-neutral retailer. The
moving target considered in these papers is the expected profit.

Here we continue the study of a similar problem, but with a risk-adjusted re-
tailer. It should be noted that the risk-adjusted expected profit is defined in Arce-
lus et al. (2012b). Moreover, in this paper, the probability of the event that the
classical profit is greater than or equal to the risk-adjusted expected profit is
maximized for uniformly distributed demand. We analyse a more relevant and
more generalized objective, where the profit is replaced by the risk-adjusted
profit (a notion introduced in our paper). This is a more appropriate approach to
the matter since we study the preferences of the retailer of each kind. Addition-
ally, we solve the satisficing-level risk-adjusted newsvendor problem for general
distribution. As a result, we obtain approximate solutions which are strictly de-
pendent on the risk coefficient. We also apply the exponential distribution, which
is widely used in practice, to the results obtained. Since the exponential distribu-
tion is mathematically tractable, we are able to obtain exact solutions to the
problem. It should be emphasized here that the use of the uniform distribution in
Arcelus et al. (2012b) also gives exact results, but in real life there are no prod-
ucts whose demand can be modelled by this distribution. Moreover, in our opin-
ion, in the paper cited the solution is not complete because some special cases of
the problem should be added and the solution should depend on the risk coeffi-
cient. This gap can be complemented by our paper.

Furthermore, in our study we combine the satisficing-level objective with the
classical expected profit objective into the bicriteria index. Here the classical objec-
tive is to maximize the risk-adjusted expected profit and the satisficing-level objec-
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tive is to maximize the probability that the risk-adjusted profit is greater than or
equal to the risk-adjusted expected profit. Since these two objectives are mutually
conflicting, we find the compromise solution which can be done numerically.

The rest of the paper is organized as follows. Section 2 is devoted to the general
bicriteria risk-adjusted newsvendor problem and provides the basic notation and
definitions. The notion of a bicriteria index is also recalled. The risk coefficient is re-
called and the notion of the risk-adjusted profit is introduced. Approximate solutions
of the satisficing-level model and the bicriteria model are presented for the general
distribution. In Section 3, the exponential distribution is applied to the results ob-
tained, which allow us to give exact solutions. Next, we illustrate the formulas ob-
tained by a numerical example and draw graphs of auxiliary functions. Finally, we
perform sensitivity analysis of the changes of the risk coefficient.

2 The bicriteria newsvendor problem with the risk-adjusted
profit — general case

In this section, we recall the definitions of the profit function and the risk-
adjusted expected profit, and introduce the definition of the risk-adjusted profit.
Using these quantities, we solve the newsvendor problem with a classical risk-
adjusted expected profit objective and with a risk-adjusted satisficing-level ob-
jective. Finally, we investigate the bicriteria problem with both these objectives.

In the classical newsvendor problem, we examine a retailer who wants to ac-
quire Q units of a given product subject to random demand. We use the follow-
ing notation. Let:

e p > 0 be the selling price for unit (unit revenue);

¢ > 0 be the purchasing cost per unit;

s > 0 be the unit shortage cost;

v be the unit salvage value (unit price of disposing any excess inventory);

f () and F(.) be the probability density function and the cumulative distribu-
tion function of the demand with mean u;

e 1 = 0 be the risk coefficient.

The standard assumption is v < ¢ < p. The risk coefficient expresses the risk tol-
erance of the retailer. There are four risk categories. Namely, for A = 0 we have a risk-
less retailer and for A = 1, a risk-neutral retailer. For 0 < A < 1 we are dealing with
arisk-seeker and for 4 > 1, with a risk-averse retailer (cf. Arcelus et al., 2012b).

We define the risk-adjusted profit by the formula:

(p—c)x—Ac—v)(Q—x),if x<Q
@0 =160 o s e x> 0
where Q is the order quantity and x is the realized demand. Then the risk-
adjusted expected profit E; is equal to:



12 M. Bieniek

Ex(Q) = (p — ) — 2| (c = 1)(Q - 1) +(p+s—v)f(x—o)f(x)dx )
Q

Arcelus et al. (2012b) justify using the risk coefficient as follows. They state
that the first term in the formula for the risk-adjusted expected profit, without the
risk coefficient, stands for certain gains. The second term, with the risk coeffi-
cient, indicates uncertain losses and includes the variability of the random de-
mand. From this definition, we can further see that the higher the degree of risk-
aversion, the higher the value of the risk coefficient.

Now, if the objective is to maximize the risk-adjusted expected profit, then
this model gives the same optimal order quantity as the model for a risk-neural re-
tailer and does not depend on A. Because of that the order quantity maximizing the
risk-adjusted expected profit Q5 can be obtained from:

FRp)=@+s-o/(p++s-).

But, in the satisficing-level model, where the objective is to maximize the
survival probability, the results depend on the risk coefficient. Here the so-called
survival probability H;(Q) is the probability of the event that the risk-adjusted
profit is greater than or equal to the risk-adjusted expected profit, namely:

H(Q) = P(m(Q) 2 Ex(Q)).

Let Qj; be the optimal order quantity which maximizes H; (Q). The following
theorem is crucial for the subsequent analysis because it gives the possible ex-
pressions for the survival probability.

Theorem 1
1. If [(p—¢c)(1—2)—As <0 and A < 1] or A > 1 then the profit function
m,(Q, x) is increasing-decreasing as a function of the realized demand, and

the survival probability is equal to:
D2(Q)

m@= | feodx
D1(Q)
2. If (p —c)(1 —A) —As > 0 and A < 1 then the profit function 7, (Q, x) is in-

creasing as a function of the realized demand, and the survival probability:
a) for E;(Q) < (p — ¢)Q is given by:

m@= | reds,
D1(Q)
b) for E;(Q) = (p — ¢)Q is given by:

Hy(Q) = f f()dx,
D, (Q)
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where D; (Q) = max {0, k(Q)} with:
N GO LEC)

p—v
and D,(Q) = max {0, [(Q)} with:
0y = 25 == E©

S

Proof
In this theorem, as compared with the earlier results by Parlar and Weng (2003),
the new case 2) occurs. This is a consequence of introducing the risk coefficient.
Thus, it is enough to prove this case. Note that if (p —c)(1—1) ——As>0
and 4 < 1 then the slope of the profit function is positive and E;(Q) can be
greater than (p — ¢)Q, which proves the desired result.

In Figure 1 we illustrate this theorem by the graphs of the profit function as
a function of the realized demand.

m(Q, x)

Figure 1. Profit function 3 (Q,x) for [(p —c)(1 — A1) —As < O0and A< 1]ord>1
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(0, x)

Figure 2. Profit function 3 (Q,x) for (p —c)(1 —2) —As >0and 1 < 1

Remark 1
Using formula (1), the expressions in the theorem can be written as:

Alp +5 = v) [, (x = Q)f (x)dx

K@ =p- p—c+Alc—v)
and:
(® —c+Ac—vu— AP +s-v)[Q+ [ (x - Qf (x)dx]
1(Q) = —— .
p—c (p+s—c)
Remark 2

Case b) of Theorem 1 is satisfied for a risk-seeker and for products for which
(p —c)(1 —A)/A > s. It corresponds to the situation when the shortage cost per
1-1

item is smaller than the maximal profit per item multiplied by -

Now, we examine the variability of the survival probability. To this aim it is
necessary to analyse the variability of the limit functions. First, we explore the
monotonicity and the zeros of these functions. Note that all results involve the
risk coefficient.

For the lower limit, we have:

k(0) = p—o)@-2 Asﬂ.
p—c+Alc—v)

Thus k(0) > 0 for [(p —c)(1—4) —As >0 and A < 1] and k(0) < O for
[(p—c)(1—21)—As<0and A < 1] or A > 1. Moreover:
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oy Apt+s—v)
and:
. _ Ap+s—v)
k(Q)_ p—C+A(C—U)f(Q)<O'

which implies that k(Q) is concave and increasing. For [(p —¢)(1 —1) —As <0
and 1 < 1] or A > 1 let Qo be such that k(Qy1) = 0. This implies that D; (Q) is
equal to 0 on the interval (0,Qy;) and is an increasing function of the order
quantity for Q > Q. Moreover, it tends to u as @ tends to infinity.

For the upper limit, we have:

1(0) = u,
Alp+s—v)

r'Q) =- @(_C)(l—_/l)_/ls)F@l
. _ Ap+s—v
Q) =~ a—n =1 @

Let Qo be such that [(Qy,) = 0. If (p —c)(1 — 1) —As > 0 and A < 1 then
the upper limit D,(Q) is decreasing for Q < Qy, and equal to 0 for Q > Qy,
otherwise D, (Q) is increasing and tends to infinity as Q tends to infinity.

Additionally, for [(p —c)(1 —21) —As < 0and A < 1]or A > 1if:

D2(Qm) — D1(Qu) =0,
then we infer that the minimum distance between the limit functions is attained
for Qu such that F(Qy) =[(p —c)(A—1) + As]/[A(p + s — v)] (cf. Parlar
and Weng, 2003).

Using the above properties, we obtain the approximate solution for the satis-
ficing-level model which is later used in the bicriteria model. The next theorem
holds for a risk-adjusted retailer. It is equivalent to the theorem for a risk-neutral
retailer presented in Parlar and Weng (2003). In our case, the solution involves
the risk coefficient and one more additional case occurs.

Theorem 2
1. If [(—c)(1—A)—As<0 and A<1] or A>1 and if for some
parameters p, s, v we have:
a(Q) < b(Q) for Q@ > Q.

where a(Q) = £(D2(Q))/f (D1(Q)) and b(Q) = S==n A FD, then the

survival probability H;(Q) is decreasing on (Q, ) and attains its maximum on

the interval (Qgq, Qp)-

2. If (p—c)(1 —21) —As >0 and A < 1 then the survival probability H;(Q)
attains its maximum at Q, defined by E;(Q;) — (p —c)Q; = 0. Then the
maximal survival probability is equal to 1 — F(Q,).
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Proof

It is enough to prove 2). In this case, the risk-adjusted profit function is an increasing
function of the realized demand. Furthermore, E;(0) =[(p —c)(1—21) —
— Asu > 0 and, additionally, £4(¢) is a convex function for all ¢>0. This
implies that there exists Q; such that E; > (p —¢)Q for Q < Q1, E; < (p — ¢)Q
for Q > Q, and E;(Q;) = (p — ¢)Q;. These inequalities are illustrated in Figure 3.
Therefore, we have D;(Q;) = D,(Q,)=Q;. Since D,(Q) is in this case a de-
creasing function of Q and D, (Q), an increasing function of @, then using Theo-
rem 1b we see that the optimal order quantity is Q; and the maximum survival
probability is Hy(Q,) = [ (: f(x)dx, which gives the desired result.

Q

Figure 3. Functions: (p — ¢)Q (dashed) and E; (Q) (solid) for (p —¢c)(1 —A) —As >0and 1< 1

Now we combine both objectives in the bicriteria newsvendor model. These
objectives are mutually conflicting. For this reason, the bicriteria index Y (Q) is
used, which is defined by:

1—w

HQ = 5B Q) + - H@

(cf. Parlar and Weng, 2003). Let E; = E;(Qg) and H; = H;(Qf). Note also that
both E; and Hj, are constants in the bicriteria function. The weight 0 <w <1
measures the relative importance of E;(Q) and H,(Q). Our aim is to find the or-
der quantity which maximizes the bicriteria index. It can be considered as
a compromise solution to the bicriteria problem. Let us recall that Qf < Qf
holds always and since the function Y3 (Q) is continuous, it attains its maximum
on the interval (Qp, Q). The derivative of the bicriteria index is equal to




Bicriteria Optimization in the Risk-adjusted... 17

Y'(Q) = E% E,—i(Q) + %H/{(Q) and it suffices to find Q; such that Y'(Qy) = 0

and then to prove that Y"'(Q) < 0 for all Q > Q. As a result, we obtain a unique
Qy dependent on A which maximizes the bicriteria index and satisfies the ine-
quality Q5 < Qy < Qg. From now on we will write Y* = Y(Qy). Note that if the
second derivative H"(Q) > 0 then Y '(Q) < Ofor the weight w such that:
EiH; (@)
E;H;(Q) — HyE; (@)’

where all Q > Q. The compromise solution optimal for the bicriteria problem
can be found numerically.

3 The newsvendor problem with the risk-adjusted profit
— exponential demand case

This section shows the results of the previous section for exponentially distrib-
uted demand. Exact solutions and numerical examples are given for demand
with the density f(x) = ae™®*, x > 0 and the cumulative distribution function
F(x)=1—e % x> 0, where @ > 0 is the parameter of this distribution. The
mean demand is y = % In this case, the order quantity maximizing the risk-
adjusted expected profit is Qg = éln %.

Since for the exponential distribution we have Q5 = Qyq = Qu, Which was
proved in Bieniek (2016), the counterpart of the Theorem 2 is the following:

Theorem 3

If the demand distribution in the newsvendor problem is an exponential distribu-

tion with the parameter ¢ > 0, then the following statements hold.

.If [(p—c)(1—2A)—2As<0 and A<1] or A>1 and if for some
parameters p, s, v we have:

a(Q) < b(Q) forQ > Qo

where a(Q) = e~ AD2(@)-D1(@)) gnd b(Q) = As—(1-D(p-c) e~

p—Av—(1-Mc 1-e-aQ’ then then the

. e .. . « _ 1 p+s—v .
survival probability attains its maximum value at Q7 = - In o= and this
maximum value is equal to:

A(p—v+s)
p ; c te—v (p—c)(A—1)+As
H" =HQp)=1-| ———
@) e ———

2. If (p —c)(1 — 1) — As > 0 and A < 1 then the survival probability attains its
maximum at Q,, such that £;(Q;) — (p — ¢)Q; = 0. Then H* = e ™%,
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Now we illustrate the results of Theorem 3 with a graph. Figure 4 shows the
graph of of H(Q) for the parameters (a, v, c,p,s) = (0.003,15,16,30,50). We
assume that the risk coefficient is equal to 1.3, 1.0 and 0.7, respectively.

HlQL

0

500 1000 1500

Figure 4. Survival probability H(Q) for (a,v,c,p,s) = (0.003,15,16,30,50)) with A = 1.3
(dotted); A = 1.0 (solid) and A = 0.7 (dashed)

We conclude that for a more risk-averse retailer the order quantity maximiz-
ing the survival probability increases and the maximal survival probability also
increases. Furthermore, for a more risk-seeking newsvendor the optimal order
quantity decreases along with the optimal survival probability.

In what follows, we present a numerical example with the same parameter
values. The optimal solution of the classical newsvendor model and the satis-
ficing-level model are calculated separately, for various values of A. The risk co-
efficient A is fixed and varies from 0.2 to 1.3 with step 0.1.

Table 1: Sensitivity analysis for various parameters A for (a,v,c,p,s) = (0.003,15,16,30,50)

2 Qi H* Q: E’

0.7 376.622 0.8116 1391.46 3692.64
0.8 418.872 0.8274 1391.46 3553.5
0.9 455.889 0.8404 1391.46 3414.35
1.0 488.779 0.8514 1391.46 3275.2
1.1 518.334 0.8607 1391.46 3136.06
1.2 545.138 0.8688 1391.46 2996.91

Let us analyse the results presented in Table 1. We see that the optimal order
quantity maximizing the risk adjusted expected profit is always larger (possibly
even three-fold) than the solution of the satisficing-level model. If the risk coef-
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ficient increases from 0.7 to 1.2 then the optimal order quantity maximizing the
survival quantity increases from 376.622 to 545.138. Moreover, the optimal or-
der quantity in the classical objective does not depend on the risk coefficient and
remains constant, equal to 1391.46 for any A. But both the maximum survival
probability and the risk adjusted expected profit depend on the risk coefficient.
The survival probability increases from 0.811 to 0.8688 if A increases from 0.7
to 1.2. By contrast, the maximum risk-adjusted expected profit decreases from
3692.64 t0 2996.91 for the increasing risk coefficient.

Now we show the results of a numerical example of the bicriteria problem.
Note that the optimal order quantity Qy can be found numerically. We assume
that the weight increases from 0 to 1 with step 0.1. The risk coefficient A is set to
0.8, 1.0 and 1.2, respectively. We examine the sensitivity of the optimal solution
with respect to weight w. The model parameters here are also (a,v,c,p,s) =
= (0.003,15,16,30,50). For these parameters to ensure the negativity of
Y (Q), weight w should be greater than or equal to 0.5. For w < 0.5 we simply

take Qy = Qf.

Table 2: Sensitivity analysis for various values of weight w
for (a,v,c,p,s) = (0.003,15,16,30,50)

1 0.8 0.8 1.0 1.0 1.2 12
w Qv & Qy & Qv Y
0.5 1300.06 0.7334 1310.09 0.7289 1317.43 0.7266
0.6 1333.06 0.7863 1339.52 0.7827 1344.2 0.7808
0.7 1354.96 0.8396 1359.01 0.8368 1361.93 0.8354
0.8 1370.6 0.893 1372.91 0.8911 1374.58 0.8902
0.9 1382.33 0.9464 1383.34 0.9455 1384.07 0.945
1.0 Q5 =1391.46 1.0 Q; 1.0 Q0 1.0

We note that as weight w increases, the optimal order quantity maximizing
the bicriteria index also increases. Moreover, for greater values of w the ex-
pected profit model has an increasing influence on the bicriteria model. For this
reason, the optimal value Qy is closer to the optimal order quantity Qg of the ex-
pected profit model. Otherwise, lower values of weight imply a greater influence
of the satisficing-level model on the bicriteria model. Additionally, for w < 0.5
the order quantity maximizing the bicriteria index is assumed to be equal to the
optimal order quantity maximizing the survival probability. All these statements
hold for a certain fixed value of the risk coefficient.
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4 Conclusions

Our paper deals with the bicriteria optimization in the newsvendor problem with
various risk tolerance. First, we define the risk-adjusted profit function. The first
objective investigated is the classical objective of the maximization of the ex-
pected profit but for the risk-adjusted profit. The second objective considered is
the maximization of the probability that the risk-adjusted profit is greater than or
equal to the risk-adjusted expected profit. We determine the solutions separately
for each model and then we obtain the compromise solution with two conflicting ob-
jectives. The solution of the bicriteria problem can be found numerically. Since the
results of the satisficing-level model in the general case are approximated, we use
the exponential distribution to determine exact solutions. All the results strictly de-
pend on the risk tolerance of the retailer. Namely, the solutions are different for a
risk-averse, a risk-neutral, and a risk-seeking newsvendor. The sensitivity analysis of
the changes of the risk coefficient is also performed.

Future research can include, for instance, the creation of new algorithms for
the solution of this model. Other modifications of the profit target setting, taking
into account the behaviour of the customer, could also bring interesting results.
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