PL EN


2016 | 296 | 163-171
Article title

Sentiment analysis of Twitter data using emoticons and emoji ideograms

Authors
Content
Title variants
PL
Analiza wydźwięku danych z Twittera z wykorzystaniem emotikonów i emoji
Languages of publication
EN
Abstracts
EN
Twitter is an online social networking service where worldwide users publish their opinions on a variety of topics, discuss current issues, complain, and express positive or negative sentiment for products they use in daily life. Therefore, Twitter is a rich source of data for opinion mining and sentiment analysis. However, sentiment analysis for Twitter messages (tweets) is regarded as a challenging problem because tweets are short and informal. This paper focuses on this problem by the analyzing of symbols called emotion tokens, including emotion symbols (e.g. emoticons and emoji ideograms). According to observation, these emotion tokens are commonly used. They directly express one’s emotions regardless of his/her language, hence they have become a useful signal for sentiment analysis on multilingual tweets. The paper describes the approach to performing sentiment analysis, that is able to determine positive, negative and neutral sentiments for a tested topic.
PL
Twitter jest ogólnoświatowym serwisem, w którym użytkownicy publikują swoje opinie na różne tematy, dyskutują na temat bieżących wydarzeń oraz wyrażają pozytywne bądź negatywne opinie o produktach, których używają w codziennym życiu. Z tego powodu Twitter jest potężnym źródłem danych do badania opinii i analizy wydźwięku. Jednak analiza wydźwięku komunikatów na Twiterze (tweetów) uważana jest za problem, będący zarazem wyzwaniem, z powodu niewielkiej objętości tekstu tweetów i często nieformalnego charakteru ich języka. Artykuł skupia się na analizie symboli znanych jako emotikony i emoji. Zgodnie z przeprowadzonymi badaniami, symbole te są powszechnie używane w komunikacji za pomocą Twittera. Wyrażają one bezpośrednio emocje niezależnie od języka, dlatego mogą być używane w wielojęzycznych tekstach. W artykule przedstawiono podejście do analizy wydźwięku umożliwiającej określenie pozytywnego, negatywnego lub neutralnego wydźwięku badanych tekstów.
Year
Volume
296
Pages
163-171
Physical description
Contributors
  • University of Economics w Katowice. Faculty of Informatics and Communication. Department of Informatics
References
  • S. Das, M. Chen, Yahoo! for Amazon: Extracting Market Sentiment from Stock Message Boards, “Proceedings of the Asia Pacific Finance Association Annual Conference (APFA)” 2001, Vol. 35.
  • P.D. Turney, Thumbs up or Thumbs down?: Semantic Orientation Applied to Unsupervised Classification of Reviews [in:] Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, Philadelphia, PA 2002, pp. 417-424.
  • M. Hu, B. Liu, Mining and Summarizing Customer Reviews [in:] Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD’04, ACM, New York, NY 2004, pp. 168-177.
  • S. Kim, E. Hovy, Determining the Sentiment of Opinions [in:] COLING '04 Proceedings of the 20th international conference on Computational Linguistics, Geneva 2004.
  • A. Agarwal, F. Biadsy, K. McKeown, Contextual Phrase-Level Polarity Analysis Using Lexical Affect Scoring and Syntactic n-Grams, Proceedings of the 12th Conference of the European Chapter of the ACL, Athens 2009, pp. 24-32.
  • T. Wilson, J. Wiebe, P. Hoffmann, Recognizing Contextual Polarity in Phrase-Level Sentiment Analysis [in:] Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing, Association for Computational Linguistics, MIT Press, Cambridge, MA 2005, pp. 399-433.
  • A. Esuli, F. Sebastiani, Sentiwordnet: A Publicly Available Lexical Resource for Opinion Mining, “Proceedings of LREC” 2006, Vol. 6.
  • V. Hatzivassiloglou, K.R. McKeown, Predicting the Semantic Orientation of Adjectives [in:] Proceedings of the 35th Annual Meeting of the Association for Computational Linguistics and Eighth Conference of the European Chapter of the Association for Computational Linguistics, Association for Computational Linguistics, Madrid 1997, pp. 174-181.
  • B. Pang, L. Lee, Opinion Mining and Sentiment Analysis, “Foundations and Trends in Information Retrieval” 2008, Vol. 2(1-2), pp. 1-135.
  • J. Read, Using Emoticons to Reduce Dependency in Machine Learning Techniques for Sentiment Classification [in:] Proceedings of the ACL Student Research Workshop (ACLstudent ‘05), Association for Computational Linguistics, Stroudsburg, PA 2005, pp. 43-48.
  • A. Pak, P. Paroubek, Twitter as a Corpus for Sentiment Analysis and Opinion Mining, “LREC” 2010, Vol. 10.
  • A. Bifet, E. Frank, Sentiment Knowledge Discovery in Twitter Streaming Data, Discovery Science, Springer, Berlin-Heidelberg 2010.
  • L. Barbosa, J. Feng, Robust Sentiment Detection on Twitter from Biased and Noisy Data [in:] Proceedings of the 23rd International Conference on Computational Linguistics: Posters, Association for Computational Linguistics, Bejjing 2010, pp. 36-44.
  • D. Davidov, O. Tsur, A. Rappoport, Enhanced Sentiment Learning Using Twitter Hashtags and Smileys [in:] Proceedings of the 23rd International Conference on Computational Linguistics: Posters, Association for Computational Linguistics, Bejjing 2010, pp. 241-249.
  • A. Go, R. Bhayani, L. Huang, Twitter Sentiment Classification Using Distant Supervision, CS224N Project Report, Stanford 2009, pp. 1-12.
  • Unicode Miscellaneous Symbols, http://www.unicode.org/charts/PDF/U2600.pdf (accessed: May 2015).
  • List of emoticons, Wikipedia, http://en.wikipedia.org/wiki/List_of_emoticons (accessed: May 2015).
  • N. Berry, DataGenetics, http://www.datagenetics.com/blog/october52012/index.html (accessed: May 2015).
  • Unicode Emoji, Draft Unicode Technical Report #51, http://www.unicode.org/reports/tr51/ (accessed: May 2015).
  • Twitter REST API, The Search API, https://dev.twitter.com/rest/public/search (accessed: May 2015).
  • Twitter, The Streaming APIs, https://dev.twitter.com/streaming/overview (accessed: May 2015).
  • S. Falko, How to Import Twitter Tweets in SAS DATA Step Using OAuth 2 Authentication Style, http://blogs.sas.com/content/sascom/2013/12/12/how-to-import-twittertweets-in-sas-data-step-using-oauth-2-authentication-style (accessed: May 2015).
  • S. Garla, G. Chakraborty, %GetTweet: A New SAS® Macro to Fetch and Summarize Tweets, Paper 324-2011, Oklahoma State University, Stillwater, OK 2001.
  • Twitter Text Mining Using SAS, Social Media Analytics, http://www.analyticstools.com/2012/06/social-media-analytics-twitter-text.html (accessed: May 2015).
  • T. Nasukawa, J. Yi, Sentiment Analysis: Capturing Favorability Using Natural Language Processing [in:] Proceedings of the K-CAP-03, 2nd International Conference on Knowledge Capture, Sanibel Island, FL 2003, pp. 70-77.
  • K. Dave, S. Lawrence, D.M. Pennock, Mining the Peanut Gallery: Opinion Extraction and Semantic Classification of Product Reviews [in:] Proceedings of International Conference on World Wide Web, Budapest 2003, pp. 519-528.
  • B. Liu, Sentiment Analysis and Opinion Mining, Morgan & Claypool Publishers, Williston, VT 2012.
  • W.G. Parrott (ed.), Emotions in Social Psychology: Essential Readings, Key Reading in Social Psychology, Psychology Press, Philadelphia, PA 2001.
Document Type
Publication order reference
Identifiers
ISSN
2083-8611
YADDA identifier
bwmeta1.element.cejsh-74a49185-95f0-4712-a09f-ced5bf5477f1
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.