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Summary: The main idea of this research is to check the efficiency of the Black option
pricing model on the basis of high frequency emerging market data. However, liquidity
constraints — a typical feature of an emerging derivatives market — put severe limits for
conducting such a study [Kokoszczynski et al., 2010]. This is the reason we focus on mi-
dquotes instead of transactional data being aware that midquotes might not be a proper
representation of market prices as probably transactional data are. We compare in this
paper our results with the research conducted on high-frequency transactional and midquo-
tes data. This comparison shows that the results do not differ significantly between these
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forms other models, especially the Black model with realized volatility (BRV) with the
latter producing the worst results.
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Introduction

The Black’s [1976] futures option pricing model began a new era of futures
option valuation theory. The rapid growth of option markets in the 1970s’
brought soon a lot of data and stimulated an impressive development of research
in this area. Soon after this, numerous empirical studies put in doubt basic as-
sumptions of the Black model: they strongly suggest that the geometric Brow-
nian motion is not a realistic assumption for dynamics of underlying prices. Ma-
ny underlying return series display negative skewness and excess kurtosis
[Bates, 2003]. Moreover, implied volatility calculated from the Black-Scholes
model often vary with the time to maturity of the options and the strike price
[Rubinstein, 1998; Tsiaras, 2009]. These observations drove many researchers to
propose new models which relax some of restrictive assumptions of the Black-
-Scholes model [Broadie, Detemple, 2004; Han, 2008; Mitra, 2009; Garcia,
Ghysels, Renault, 2010]. Following Han [2008], we can distinguish several rese-
arch strands in the literature. The first one engage in extending Black-Scholes-
-Merton (BSM) framework by incorporating stochastic jumps or stochastic vola-
tility [Hull, White, 1987; Amin, Jarrow, 1992], another concentrates on estima-
ting the stochastic density function of the underlying asset directly from the
market option prices [Derman, Kani, 1994; Dupire, 1994] or using other (than
normal) distribution of returns of the underlying asset [Corrado, Su, 1996; Ru-
binstein, 1998]. On the other hand, the Black-Scholes model is still widely used
not only as a benchmark in comparative studies testing various option pricing
models, but also among market participants. Christoffersen and Jacobs [2004]
show that much of its appeal is related to the treatment of volatility — the only
parameter of the Black-Scholes model that is not directly observed.

Detailed analysis of literature [Brandt, Wu, 2002; Bates, 2003; Ferreira
et al., 2005; Andersen, Frederiksen, Staal, 2007; An, Suo, 2009; Mixon, 2009]
seems to suggest that the BSM model with implied volatility calculated on the
basis of the last observation performs quite well even when compared with many
different pricing models (standard BSM model, BSM with realized volatility,
GARCH option pricing models or various stochastic volatility models).

Kokoszczynski et al. [2010] use high-frequency (10-seconds) data for
WIG20’ index options to check whether the same observation applies also to the

2 The Chicago Board of Options Exchange was founded in 1973 and it adopted the Black-Scholes
[Black, Scholes, 1973] model for option pricing in 1975.

* The WIG20 is the index of twenty largest companies on the Warsaw Stock Exchange (further
detailed information may be found at [www 1]).
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Polish market. Their results show that the Black model with implied volatility
(BIV) gives the best results, the Black model with historical volatility (BHV) is
slightly worse, and the Black models with realized volatility give clearly the
worst results. This ranking, based on four different types of error statistics, is
rather robust with respect to different times to maturity and moneyness ratios. It
is important to notice, that in their research, market prices are represented by
midquotes calculated on the basis of the bid and ask quotes. As we know, these
quotes do not represent actual prices at which transactions take place.

Nevertheless, most papers we know that test alternative option pricing mo-
dels and include the Black-Scholes model among models tested therein use bid-
ask quotes (midquotes) as they allow to avoid microstructural noise effects
[Dennis, Mayhew, 2009]. In addition, Ait-Sahalia and Mykland [2009, p. 592]
state explicitly that quotes “contain substantially more information regarding the
strategic behaviour of market makers” and they “should be probably used at
least for comparison purposes whenever possible”. However, Beygelman [2005]
and Fung and Mok [2001] argue that a midquote is not always a good proxy for
the true value of an option.

Thus, the aim of this article is to investigate whether the conclusions pre-
sented in Kokoszczynski et al. [2010] apply to both: transactional data and mi-
dquotes.

The structure of this paper has been planned in such a way as to answer the
following research questions:

e (Can we treat midquotes data as a representation of market prices similar to
transactional data in order to reveal specific market features?

e Are there any differences between the results for these two sets of data con-
cerning the efficiency of option pricing models we test?

1. Option pricing methodology

The basic pricing model we choose is the Black-Scholes model for futures
prices, i.e. the Black model [Black, 1976]. We call it further the BHV model —
the Black model with historical volatility. Below are formulas for this model:

c=e "[FN(d,)~ KN (d,)], (1)
p=e""[KN(~d,)~ FN(~d,)] @)
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where:
In(F/K)+0°T/2
dl = \/— ’ (3)
oNT
In(F/K)—0c’T/2
d, = =d, —o\T 4
> oy | , “4)
where:

¢ and p — respectively valuations of a call and a put option,
T — time to maturity,

r — the risk-free rate,

F — the futures price,

K — underlying strike,

o — volatility of underlying,

N(.) — the cumulative standard normal distribution.

One of the most important issues about option pricing is the nature of an as-
sumption concerning the specific type of volatility process. Therefore, we check
the properties of the Black model with three different types of volatility estima-
tors: historical volatility, realized volatility, and implied volatility. Detailed for-
mulas for these estimators are presented in Kokoszczynski et al. [2010].

Having these volatility estimators we study several types of option pricing
models:

e BHYV - the Black model with historical volatility (sigma as standard devia-

tion, n = 21 intervals):
n Na

n __ 1 —
VARy = W; ;(m —7)?, (5)

where:
variance of log returns calculated on high frequency data on the basis of last # days,
ri; — log return for i-th interval on day ¢ with sampling frequency equal to A,
which is calculated in the following way:

1ie = logCit —logCi_1y (6)
C;,— close price for i-th interval on day ¢ with sampling frequency equal to A,
N, —number of A intervals during the stock market session,
n — memory of the process measured in days, used in the calculation of respec-
tive estimators and average measures,
7 — average log return calculated for last #» days with sampling frequency A,
which is calculated in the following way:
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e BRYV - the Black model with realized volatility (realized volatility as an esti-
mate of sigma parameter in formulas (3) and (4)); RV (realized volatility)
calculated on the basis of observations with several different A intervals,
where A stands for sampling frequency:

Na
RVye= ) 1ig? ®)
t=1

e BIV —the Black model with implied volatility (implied volatility as an estimate
of sigma in formulas (3) and (4)); IV (implied volatility) calculated for the
previous observation, separately for each TTM (time to maturity) and money-
ness class, and for both call and put options, hence for 50 different groups).

Initially, we calculate BRV models with four different A values: 10s, 1m,
5m, and 15m. Then, we check the properties of averaged RVs with different
values of parameter » in pricing models. Similarly, like Kokoszczynski et al.

[2010], we find no significant differences between different averaged RVs. As

a result, we calculate BRV models based only on A = 5m interval with different

values of averaging parameter (n = 5, and 21) and hence, we obtain the follo-

wing three BRV models: BRV10s (non-averaged one), BRV5m (non-averaged

one), BRV5m_5 and BRV5m 21

Finally, in order to verify our research hypothesis, we use root mean squ-
ared error (RMSE):

Nyn

RMSE = \/1 > (Black, — close,)’ ©))

Al izl
where:
close; — the option price (midquote or last observed transaction price) for the i-th
interval,
Black; — the Black model price (BHV, BRV or BIV) for the i-th interval,
Nj — number of A intervals during the stock market session,
RMSE - calculated for all models, for different TTM and MR classes, and for
both call and put options.

* It is common approach in financial research to set the interval between 5 minutes and 15 min-
utes because they constitute the good trade-off between the non-synchronous bias and other mi-
crostructure biases.
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2. Data and description of volatility processes
2.1. Data description

In empirical analysis we apply transaction data for the WIG20 index
options and WIG20 futures contracts, obtained from the DM BOS provider. The
sample covers the period from January 2™, 2008 to June 20", 2008. We have
aggregated the options transactional prices data from the original frequency of
1 second into 1 minute interval, and use the WIG20 futures prices data that have
10 second interval’. In each trading day, sessions begin at 9 am and finish at 4:30
pm®. Hence, we have 53 218 observations (118 trading days, 451 observations
for each trading session). The risk free interest rate is approximated by the
WIBOR interest rate, also converted into 1-minute intervals.

The whole data set comprises transaction prices for 65 call index options
and 63 put index options expiring in March, June, and September 2008 (C, F and
I series for call options, and O, R and U series for put options). In order to pre-
sent the results of analysis, we order them according to:

e 2 types of options (call and put),

e 5 classes of moneyness ratio (MR), for call options: deep OTM (0-0.85),
OTM (0.85-0.95), ATM (0.95-1.05), ITM (1.05-1.15) and deep ITM (1.15+),
and for put options in the opposite order’,

e 5 classes for time to maturity (TTM): (0-15 days], [16-30 days], [31-60
days], [61-90 days], [91+ days).

This categorization allows us to compare different pricing models along
numerous dimensions.

2.2. Description of volatility processes

We consider three different volatility measures: historical, realized and im-
plied volatility. Obviously, this is the reason for differences between theoretical
option prices we compare.

> We do not aggregate WIG20 futures data into 1-minute intervals, because we also want to

include RV estimators with A parameter of frequency higher than 1 minute.

Actually, the continuous trading stops at 4:10 p.m. Between 4:10 pm and 4:20 pm close price is
settled and then, till 4:30 pm investors can trade only on the basis of close price.

Moneyness ratio is usually calculated, according to the following formula:

moneyness ratio = s _F
T KleT K

where: K is the option strike price, S — the price of underying, F — the futures price of
underlying, » — the risk free rate, and 7' — time to maturity.

6
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In the case of the historical volatility estimator Ny= 1 for every r;, (daily log re-
turns) and C;, in formulas (5) to (8). Moreover, we use the constant value of parame-
ter n =21, as we want to reflect the historical volatility from the last trading month.

Realized volatility was initially calculated for A = 10s, 1m, 5m and 15m.
However, Kokoszczynski et al. [2010] show that differences between theoretical
options prices from the Black model with RV calculated with these four A para-
meters are negligible. Therefore, we present our results for RV calculated only
with A = 10s and A = 5m®. However, the procedure of averaging has been applied
only for 5-minute interval and » days, where n = 5 and 21.

Figure 1 presents realized volatility compared to historical volatility time series.
The distinguishing fact is that the not-averaged RV time series is much more volatile
than the averaged RV or HV time series. Obviously, such high volatility of volatility
can strongly influence theoretical prices of the BRV model and its stability over
time. One can thus expect that in periods of high returns volatility the BRV model
with non-averaged RV estimator may produce high pricing errors.
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Note:

The volatility time series cover the data period between January 2, 2008 and June 19", 2008. Vertical lines represent
end of month and additionally the day of March 20", when option series C (call) and O (put) matured. Std 21 n —
stands for HV calculated based on Sm intervals with memory equaled 21 days, RV_n 5m, RV n 5mr,
RV_n_5m 21 —stands for RV calculated based on 5Sm intervals with memory equaled 1, 5, and 21 days.

Figure 1. Historical and realized volatility (5m, 5Sm_5, 5Sm 21)

Source: Own calculations.

8 As mentioned before, although transactional data is of 1-minute frequency, we have decided to
include RV estimator also with A higher than 1 minute (seconds or tick).
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3. The liquidity issue

As we mentioned earlier, liquidity constraints — a typical feature of an
emerging derivatives market — put severe limits for conducting such a study as
we present here. It was the reason why Kokoszczynski et al. [2010] conducted
their research using midquotes data. Therefore, currently we verify their
previous results using transactional data for the same time period.

Figure 2 and Figure 3 present the comparison of midquotes and transactio-
nal data sets with respect to the possibility of trades. When we look at Figure 2
and Figure 3, we observe considerable difference between the opportunity to
trade indicated in available strike prices or active midquotes and the actual tra-
des revealed by transactional data. The similar patterns are observed in the case
of call and put options and that is the additional confirmation for the results pre-
sented in the earlier figures.

The most important outcome from the liquidity analysis is the major
difference in the trade volume between midquotes and transactional data. We can
see that the number of actual trades is on average less than 0.2% of potential
trades indicated by active midquotes. It obviously confirms the low liquidity
phenomenon of emerging markets and it is the reason why we have decided to
conduct addititonal study applying transactional data in order to verify results
obtained for midquotes data.
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Figure 2. Moneyness ratio histogram for call options with respect to available strike
prices, active midquotes and transactional data

Source: Own calculations.
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Figure 3. Moneyness ratio histogram for put options with respect to available strike
prices, active midquotes and transactional data

Source: Own calculations.

4. Results

RMSE is calculated for all pricing models (BRV10s, BRV5m, BRV5m_5,
BRV5m 21, BHYV, BIV, and additionally for the BRV model with different
values of parameter 7n) which are divided into 5 TTM classes and 5 MR classes.
Frequencies of predicted premiums for each model is presented in Table 1.

Table 1. Number of predicted premiums for different classes of MR and TTM for BRV

model”

Option | Moneyness | 0-15days | 16-30 days | 31-60 days | 61-90 days | 91+ days Total

CALL deep OTM 205 304 1726 1670 985 4890
CALL OTM 1586 2037 3280 2285 1161 | 10349
CALL ATM 3403 1235 1437 771 409 7255
CALL IT™M 85 35 165 157 59 501
CALL deep ITM 15 26 81 31 36 189
Total Call 5294 3637 6 689 4914 2650 | 23184
PUT deep OTM 368 857 2134 1014 1011 5384
PUT OTM 1615 1170 2 345 1694 917 7 741
PUT ATM 3416 1215 1559 1005 423 7618
PUT IT™ 450 144 283 215 107 1199
PUT deep ITM 19 8 48 61 102 238
Total Put 5868 3394 6 369 3989 2560 | 22180
Total Call and Put 11162 7031 13 058 8903 5210 45364

" 45.9 thou. for BIV, and 37 thou. for BHV

Source: Own calculations.
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Further results are divided among two subsections containing the descri-
ption for HF transactional data results, the comparison between HF transactional
data and midquotes results.

4.1. The description of results for HF transactional data

The discussion of results for HF transactional data is based on two-
dimensional charts presented as panels containing five or six boxes where we
show RMSE for all models, all MR and TTM classes. Each chart is scaled with
global minima and maxima and that enables simple and reliable comparison of
presented results. Figures 4-6 present error statistics for call and put options
separately, with individual boxes for different MR, albeit for all TTM and all
models in one box.

Figure 4 shows RMSE statistics for call options. The best results are
observed for the BIV model, but we observe results as good as those for each
model with TTM equal to 0-30 days. Analysing the results for the remaining
values of TTM we see gradual decrease of RMSE statistics while moving from
the left hand side of each chart (model 1) to its right hand side (model 6). These
observations confirm once again the ranking of our models: from the BIV model
through the BHV and the BRV5m_21 ones to the non-averaged BRV model.

Call, RMSE, deep OTHM Call, RMSE, OTHM
80 o0 TTM™M:

0-15 days
PLASRN 16-30 days
e B - U 31-60 days
. U 61-90 days

“ ————— 9l+days

Models:
20 1-BRV10s 4 - BRV5m_21
- 2 - BRV5SmM 5-BHV
L - == 3-BRVSM_5  6-BIV
1 2 3 O

Call, RVSE, ATM Cell, RMSE, deep ITM

Figure 4. RMSE statistics for call options for all MR with respect to different pricing
models and TTM

Source: Own calculations.
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Put, RMSE, deep OTM Put, RMSE, OTM

m 1 . 0-15 days
100 100 16-30 days
----------------- 31-60 days
& - 61-90 days
— 91+days

Models:

1-BRV10s 4 - BRVSm_21
2-BRV5m 5-BHV
3-BRVSM 5  6-BIV

Put, RIM3E, deep [T

Figure 5. RMSE statistics for put options for all MR with respect to different pricing
models and TTM

Source: Own calculations.

Figure 5 presents RMSE statistics for put options and shows almost the
same results as those for call options. The errors gradually decrease from the
left-hand side to the right-hand side with practically identical error values for all
models with TTM equal to 0-30 days. The only exception we observe here are
high values of error statistics when MR is deep ITM and TTM equals 61-90 days
for the BRV5 21, the BHV and the BIV models. The reason for so untypical
observation could be a very low number of transaction for deep ITM put options
with high TTM values. Nevertheless, these results confirm the ranking of models
(model 6 dominates model 1).

4.2. Comparison of results for midquotes and transactional data

One of the goals of this paper is to answer the question, how firm are our
conclusions concerning the option market that we have got using midquotes
data. To check this we repeat the previous study of Kokoszczynski et al. [2010]
using now transactional data. After discussion of results for the latter in section
4.1 the comparison of results for two different data sets will be presented in this
section.

Figure 6 with RMSE statistics for call options does not reveal any
significant differences when compared with Figure 4, both with respect to the
ranking of models and to errors dependence on TTM or MR values.
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Call, RMSE, deep OTH Call, RMSE, OTM
80 80 TTM:
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16-30 days
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—————————— 61-90 days
— 91+days
Models:
1-BRV10s 4 - BRV5m_21
2 - BRV5Sm 5-BHV
3-BRVSM_5  6-BIV

Call, RMSE, ITM Cell, RMSE, deep ITHM

L Biadsl

Figure 6. RMSE statistics for call options for all MR with respect to different pricing
models and TTM. Midquotes data

Source: Own calculations.

The comparison of the results for put options (Figure 7 for midquotes
data vs. Figures 5 for transactional data) does not add any new insights to the
conclusions based on the results for call options. RMSE statistics for
transactional data present the same picture as for midquotes data.

Put, RMSE, deep OTM Put, EMSE, OTM
130 1500 TTM:
0-15 days
16-30 days
————————————————— 31-60 days
o e 61-90 days
— 91+days
0 Models:
1-BRV10s 4 - BRV5m_21
- 2 - BRV5SmM 5-BHV
3 PPy Ry . 3-BRVSM_5  6-BIV
1 2 K 4 3 I

Put, RMSE, ATM Put, RMSE, deep ITM

130

100

SHL I 1SR
i

Figure 7. RMSE statistics for put options for all MR with respect to different pricing
models and TTM. Midquotes data

Source: Own calculations.

This brief comparison informs us that we do not observe any important
differences between the results for midquotes and transactional data. Therefore,
we can use the former in our research for countries where liquidity issue (which
is usually the characteristic of emerging country) plays an important role. Two
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sets of data may give different outcomes with respect to outliers which
can distort data in a different manner because the number of observations for
midquotes and transactional data is usually not the same.

Conclusions and further research

We decided to evaluate and develop further the study by Kokoszczynski et
al. [2010] based on WIG20 option index data for the first half of 2008 year and
to check if those results were still valid not only for midquotes data but also for
transactional data. Furthermore, we presented the analysis of liquidity for option
market in order to better understand different behaviour of option market within
various classes of TTM and MR.

First of all, the results for transactional data do not differ significantly from
the results based on midquotes data. The sequence of models, from the most
efficient to the least one, is as follows: BIV, BHV, BRV5m 21, BRV5m 5,
BRV5m, BRV10s. Moreover, the variability of observed value of analysed error
statistics when we move from model 1 (BRV10s) to model 6 (BIV) become
much lower what additionally confirms our previous results concerning the effi-
ciency of these models. Focusing on parameter » and only on BRV models we
observe that the lowest value of error is obtained for the highest tested n = 21,
what confirms our initial hypothesis that non-averaged value of RV estimator is
not the best choice when we consider the efficiency of option pricing model. On
the other hand these results do not give us the definite answer to the question,
what is the optimal value of parameter n. Further research should address this
issue. Next, we observe the clear relation between model error and TTM, and
model error and moneyness ratio (for call and put options): high error values for
low TTM and moneyness ratios, and best fit for high TTM and moneyness
ratios. All these outcomes confirm our initial hypothesis that midquotes are
a proper representation of market prices and can be used in similar studies, espe-
cially in case of low liquidity markets.

Analysing liquidity issues we can see several interesting features of mi-
dquotes and especially of transactional data. First of all, the volume of call and
puts is focused on ATM, OTM and deep OTM options with hardly any volume
for deep ITM and ITM options. What is more important, the behaviour of this
characteristic is robust for transactional data and depends on the actual market
fluctuations for midquotes data. Secondly, the volume of turnover focuses aro-
und ATM options, indicating that when we consider the value of transactions the
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highest liquidity is observed for ATM options. Thirdly, we observe similar pat-
tern for number of open positions as described for their volume. Fourthly, no
matter which characteristic do we choose, the liquidity is significantly higher for
put options. However, we are aware of the fact that the last observation could
result from the sharp downward movement of the market in the time of research
and high demand for put options for hedging purposes.

More generally, our results seem to confirm that the nature of data used for
studies of option models — midquotes or transactional ones — does not play the
important role in determining results one gets. Another observation, i.e. how
important are liquidity issues for patterns, we get comparing performance of
various option pricing models, should be studied further.
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KWOTOWANIA MID OPCJI CZY ICH CENY TRANSAKCYJNE?
EWALUACJA MODELU BLACKA NA DANYCH WYSOKIEJ
CZESTOTLIWOSCI

Streszczenie: Glownym celem artykutu jest weryfikacja efektywnosci modelu Blacka wyce-
ny opcji na podstawie danych wysokiej czgstotliwosci dla rynku rozwijajacego sig. Ograni-
czenia dotyczace pltynnosci opcji — typowa charakterystyka instrumentéw pochodnych na
rynkach rozwijajacych si¢ — stanowia jednak istotne ograniczenie dla takiego badania [Ko-
koszczynski et al., 2010]. Niska ptynnos¢ jest jedna z przyczyn, dla ktorych wykorzystuje sig
kwotowania mid zamiast danych transakcyjnych ze $§wiadomoscia, ze dane transakcyjne
moga by¢ lepsza reprezentacja aktualnego stanu rynku na danym instrumencie finansowym.
W badaniu poréwnano obliczenia przeprowadzone na danych wysokiej czgstotliwosei dla
cen transakcyjnych i kwotowan mid. Poréwnanie to pokazuje, ze rezultaty praktycznie nie
réznia si¢ dla tych dwdch réznych danych wejsciowych i model Blacka ze zmienno$cia im-
plikowana (BIV) osiaga znacznie lepsze wyniki od pozostatych modeli, szczegolnie w po-
réwnaniu z modelem Blacka ze zmienno$cia zrealizowana (BRV).

Stowa Kkluczowe: modele wyceny opcji, Srednie kwotowania opcji, zmiennos¢ zrealizo-
wana, zmiennos$¢ implikowana, mikrostruktura rynku.





