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IDENTIFICATION OF MULTIVARIATE OUTLIERS – 
PROBLEMS AND CHALLENGES  
OF VISUALIZATION METHODS  

 
Summary: The identification of outliers is often thought of as a means to eliminate obser-
vations from a data set to avoid disturbance in further analyses. But outliers may as well be 
the interesting observations in themselves, because they can give us hints about certain 
structures in the data or about special events during the sampling period. Therefore, appro-
priate methods for the detection of outliers are needed. Literature is abundant with proce-
dures for detection and testing of single outliers in sample data. The difficulty of detection 
increases with the number of outliers and the dimension of the data because the outliers can 
be extreme in any growing number of directions. An overview of multivariate outlier detec-
tion methods that are provided in this study because of its growing importance in a wide va-
riety of practical situations. We focus on methods that can be visually presented. 
 
Keywords: outlier, Mahalanobis distance, masking, swamping effect. 
 
 
Introduction 
 

An exact definition of an outlier often depends on hidden assumptions re-
garding the data structure and the applied detection method [Ben-Gal, 2005]. In 
the literature many authors have proposed many definitions for an outlier with 
seemingly no universally accepted definition. The basic definition of an outlying 
observation is a data point or points that do not fit the model of the rest of the 
data. Hawkins [1980] defines an outlier “as an observation that deviates so much 
from other observations as to arouse suspicion that it was generated by a differ-
ent mechanism”. Barnet and Lewis [1994] indicate that “an outlying observa-
tion, or outlier, is one that appears to deviate markedly from other members of 
the sample in which it occurs”. Rousseeuw and von Zomeren [1990] stated that 
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outliers are “an empirical reality but their exact definition is as elusive as the ex-
act definition of a cluster”. They argue that outliers “are observations that devi-
ate from the model suggested by the majority of the point cloud, where the cen-
tral model is a multivariate normal” [Rousseeuw and van Zomeren, 1990]. Booth et 
al. [1989] pointed out the difficulty of defining a multivariate outlier when they re-
ferred to a statistical outlier as a nonrepresentative observation whose “position 
may not be extreme enough on the basis of a single variable to demonstrate its out-
lying characteristics. However, the combined effects of several variables could be 
substantial enough to justify categorizing” it as an outlier. However, such words as 
appear to deviate, deviates so much imply some kind of subjectivity.  

In univariate data, the identification of outlier seems relatively simple to 
carry out. A simple plot of the data, such as scatter plot, stem-and-leaf plot,  
QQ-plot etc., can often reveal which points are outliers. Identification of multi-
variate outliers is definitely more complex than in the univariate case. Practi-
cally, identification of outliers are hard to detect when dimension of p exceeds 
two [Rousseeuw and van Zomeren, 1990]. Some of the procedures for identify-
ing multivariate outliers have been adapted from the univariate methods. And 
unfortunately, “many of the standard multivariate methods are derived under the 
assumption of normality and the presence of outliers will strongly affect inferences 
made from normal-based procedures” [Schwager and Margolin, 1982]. Various con-
cepts for multivariate outlier detection methods exist in the literature [e.g. Barnett 
and Lewis, 1994; Rocke and Woodruff, 1996; Peña and Prieto, 2001]. 
 
 
1. Multivariate outliers identification 
 

Multivariate outliers pose bigger challenges than univariate data as simple 
visual detection of multivariate outliers is virtually impossible. In most cases 
multivariable observations cannot be detected as outliers when each variable is 
considered independently. A simple example can be seen in Figure 1, which pre-
sents data points having two measures on a two-dimensional space and impossibil-
ity of using classical boxplot method to detect outliers in two-dimension space. The 
lower right observations (seen in the 2D space) are clearly a multivariate outliers 
but not a univariate. Thus, the test for outliers must take into account the relation-
ships between the two variables, which in this case appear abnormal.  

Outlier detection is possible only when multivariate analysis is performed, and 
the interactions among different variables are compared within the class of data.  

 Data sets with multiple outliers or clusters of outliers are subject to masking and 
swamping effects. Although not mathematically rigorous, the following definitions 
from Acuna and Rodriguez [2004] give an intuitive understanding for these effects: 
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 Masking effect: it is said that one outlier masks a second outlier, if the sec-
ond outlier can be considered as an outlier only by itself, but not in the presence 
of the first outlier. Thus, after the deletion of the first outlier the second instance 
is emerged as an outlier. Masking occurs when a cluster of outlying observations 
skews the mean and the covariance estimates toward it, and the resulting dis-
tance of the outlying point from the mean is small. 

 Swamping effect: it is said that one outlier swamps a second observation, if 
the latter can be considered as an outlier only under the presence of the first one. 
In other words, after the deletion of the first outlier the second observation be-
comes a non-outlying observation. Swamping occurs when a group of outlying 
instances skews the mean and the covariance estimates toward it and away from 
other non-outlying instances, and the resulting distance from these instances to 
the mean is large, making them look like outliers.  

 
Fig. 1. An attempt to identify outliers from the set of simulated 100 observations (from 

N(100,5) distribution) in 2D with boxplot method and scatterplots (one of them 
with four ellipsoids where Mahalanobis distances are constant; these constant 
values correspond to the 0.25, 0.50, 0.75 and adjusted (see section 2.1) quantiles 
of the chi-square distribution) 

 

Source: Own calculations in R.  
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 A single step procedure with low masking and swamping is given in Igle-
wics and Martinez [1982]. 

The phenomenon of outlier masking and swamping also argues for the use 
of outlier resistant identification methods for detecting multivariate outliers. The 
degree of masking is measured in terms of an increase in Type II error, or false 
negatives, since observations that are truly outlying are classified as part of the 
uncontaminated population of data. Swamping refers to the increase in Type I er-
ror caused by outliers.  

Becker and Gather [1999] developed the masking breakdown point1 of  
outlier identification method that specifies the smallest fraction of outliers in  
a sample that can induce the masking affect. Becker and Gather proved that  
the masking breakdown point for an outlier detection method that uses a mean 
and covariance estimator is bounded by the breakdown points of these two esti-
mators. Further, if the two estimators have the same breakdown point, then  
the masking breakdown point of the detector is equal to the estimator break-
down point.  
 
 
2. Visualization of robust distance based methods  
 

Distance-based methods are usually based on local distance measures and 
are capable of handling large databases [among others, Breunig et al., 2000]. 
 
 
2.1. The Mahalanobis robust distance  
 

The Mahalanobis distance is a well-known criterion which depends on es-
timated parameters of the multivariate distribution. Given n observations from  
a p-dimensional dataset, denote the sample mean vector by μ and the sample co-
variance matrix by V. The Mahalanobis distance (MD) for each multivariate data 
point i, i = 1,…,n, is denoted by Mi and given by: 

 

                                                 
1  Breakdown point is an important measure that is used to describe the resistance of robust esti-

mators in the presence of outliers. Following Hodges [1967] and Hampel [1968, 1971], break-
down point of an estimator is the fraction of arbitrary contaminating observations that can be 
presented in a sample before the value of the estimator can become arbitrarily large. Lopuhaä 
and Rousseeuw [1991] have presented more formal definitions of the breakdown point for loca-
tion and covariance estimators. 
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Accordingly, those observations with a large MD can be indicated as out-

liers [Aguinis et al., 2013]. For normally distributed data the Mahalanobis dis-
tance is approximately chi-square distributed with p degrees of freedom. Poten-
tial multivariate outliers xi will typically have large values Mi, and in this 

situation a comparison with the 
2
pχ  distribution can be made. 

Masking and swamping effects play an important rule in the adequacy of 
the MD as a criterion for outlier detection. Namely, masking effects might de-
crease the MD of an outlier. This might happen, for example, when a small clus-
ter of outliers attracts μ and inflate V towards its direction. On the other hand, 
swamping effects might increase the Mahalanobis distance of non-outlying ob-
servations. For example, when a small cluster of outliers attracts μ and inflate V 
away from the pattern of the majority of the observations [see Penny and 
Jolliffe, 2001]. 

Due to these problems, robust estimators been used and substituted in the 
distance formula which yield robust distance. The use of robust estimates of the 
multidimensional distribution parameters can often improve the performance of 
the detection procedures in presence of outliers. Hadi [1992] addresses this prob-
lem and proposes to replace the mean vector by a vector of variable medians and 
to compute the covariance matrix for the subset of those observations with the 
smallest MD. A modified version of Hadi’s procedure was presented in Penny 
and Jolliffe [2001]. Caussinus and Roiz [1990] proposed a robust estimate for 
the covariance matrix, which is based on weighted observations according to 
their distance from the center. The authors also propose a method for a low di-
mensional projections of the dataset. They use the Generalized Principle Com-
ponent Analysis to reveal those dimensions which display outliers. Other robust 
estimators such as M-estimator, S-estimator, MM-estimator, MVE, MCD and 
Fast-MCD (FMCD) estimator have been proven to identify outliers better than 
classical estimator. Among the robust estimators, FMCD has been shown to be 
the best estimator compare to other robust estimators [Rousseeuw, 1985; 
Rousseeuw and Leroy, 1987; Acuna and Rodriguez, 2004].  
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Fig. 2. The ordered squared robust Mahalanobis distances of the observations against  
the empirical distribution function of the squared the Mahalanobis distance.  
In addition the distribution function of chisq_p^2 is plotted as well as two vertical 
lines corresponding specified in the argument list (default is 0.975) and the  
so-called adjusted quantile. Three additional graphics are created (the first showing 
the data, the second showing the outliers detected by the specified quantile of the 
chisq_p^2 distribution and the third showing these detected outliers by the adjusted 
quantile) 

 

Source: Figures made with mvoutlier package in R.  
 

The Figure 2 presents the ordered squared robust Mahalanobis distances of 
the observations against the empirical distribution function of the squared the 
Mahalanobis distance. The outliers are detected by the specified quantile of the 

2
pχ  distribution and by the adjusted quantile. 
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2.2. MVE and MCD methods  
 

Rousseeuw [1985] studied whether it is at all possible to combine a high 
breakdown point with affine equivariance for multivariate estimation. It is found 
that Minimum Volume Ellipsoid estimator (MVE) and Minimum Covariance 
Determinant (MCD) estimator both are affine equivariant estimators2 with a high 
breakdown. The mean of MVE was defined as center of the minimal volume el-
lipsoid covering at least h points of X. While the mean of MCD was defined as 
mean of the h points of X for which the determinant of the covariance matrix is 
minimal. In addition, Rousseeuw [1985] also found that 50% breakdown estima-
tors MVE and MCD have low asymptotic efficiencies.  

Rousseeuw and van Zomeren [1990] proposed computation of distances 
based on very robust estimates of location and covariance. MVE estimator for 
mean and covariance are used to compute robust distance. They applied it to 
various data sets and found that robust distance can identify outliers more effi-
ciently compared to MD and also found to be useful to identify outliers in multi-
variate data.  

Butler et al. [1993] showed that the MCD has better statistical efficiency 
than the MVE since the MCD is asymptotically normal. Additionally, Davies, 
showed that the MVE has a lower convergence rate than the MCD. According to 
Rousseeuw and van Driessen [1999], theoretical findings combined with the 
need for accurate estimators for use in outlier detection schemes, the MCD be-
gan to gain favor over the MVE as the preferred robust estimator for outlier de-
tection. The main drawback to using the MCD, however, is the high computa-
tional complexity involved with searching the space of half-samples of a dataset 
to find the covariance matrix with minimum determinant. 

Fast-MCD (FMCD) was developed due to the existing algorithms that is 
limited to a few hundred objects in few dimensions [Rousseeuw and Katrien, 
1999]. As a result, FMCD give accurate results for large datasets and exact MCD 
for small datasets [Rousseeuw and Katrien, 1999]. The main drawback of MCD 
strategy for robust distance detection is their large computational burden that 
limits their utility relative to large-scale problems. The result of identification 
method is presented in Figure 3. 

                                                 
2  If an estimator is affine equivariant, stretching or rotating the data will not affect the estimator. 

Dropping this requirement greatly increases the number of available estimators, and in many 
cases, non-affine equivariant estimators have superior performance to affine equivariant estimators. 
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Fig. 3. Outliers identification by robust MCD with tolerance ellipsoid (0,975)  
 

Source: Figure made with rrcov package in R. 
 
 
3. Non-traditional methods based on robust PCA  
 

A common limitation with all robust distance-based outlier detection meth-
ods is the requirement to find a subset of outlier-free data from which robust es-
timates of the mean vector and covariance matrix can be obtained. Unfortu-
nately, there is no existing method that can find an outlier-free subset with 100% 
certainty. Researchers have proposed alternative non-traditional outlier detection 
methods that attempt to avoid robust Mahalanobis distances altogether. In the 
following paragraphs, the significant non-traditional and most interesting outlier 
detection methods found in the literature are outlined.  
 
 
3.1. Method for outlier identification in high dimensions  
 

In this subsection we use fast algorithm for identifying multivariate outliers 
in high-dimensional and/or large datasets [Filzmoser, Maronna, and Werner, 
2007]. Based on the robustly sphered data, semi-robust principal components are 
computed which are needed for determining distances for each observation. 
Separate weights for location and scatter outliers are computed based on these 
distances. The combined weights are used for outlier identification. Figure 4 pre-
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sent: vector with final weights for each observation (weight 0 indicates potential 
multivariate outliers), vector with final weights for each observation (small val-
ues indicate potential multivariate outliers), vector with weights for each obser-
vation (small values indicate potential location outliers), vector with weights for 
each observation (small values indicate potential scatter outliers). 
 

 
 

Fig. 4. Results of outliers’ identification method of Filzmoser, Maronna, and Werner [2007] 
 

Source: Figures made with mvoutlier package in R. 
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This method detected more outliers than MCD method, see Figure 5. 

 
Fig. 5. Identified outliers using Filzmoser et al. [2008] method  
 

Source: Figures made with mvoutlier package in R. 
 
 
3.2. Outliers identification method based on functional approach 
 

Some of data, for example mortality data, can be treat as set of curves, 
which are the realizations on the functional space. By visualizing these curves 
we can identify outliers in the observed curves using functional equivalents of 
boxplots and bagplots. Hyndman and Shang [2010] proposed the functional bag-
plot and a functional boxplot in order to visualize functional data and to detect 
any outliers present.  

Suppose we have a set of curves {yi(x)}, i = 1,...,n, which are realizations 
on the functional space I. After visualizing these curves for large n using func-
tional equivalents of boxplots and bagplots we want to identify outliers in the 
observed curves. In this concept the notion of ordering a set of curves is crucial. 
This methods use approach to ordering obtained using a principal component 
decomposition of the set of observed curves. If we let: 
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where {φk(x)} represents the eigenfunctions, then we can use an ordering method 
from multivariate analysis based on the principal components scores {zi,k}. The 
simplest procedure is to consider only the first two scores, zi = (zi,1, zi,2). Then an 
ordering of the curves is defined using the ordering of zi = (zi,1, zi,2). For example, 
bivariate depth can be used [Rousseeuw et al., 1999]. Alternatively, the value of the 
kernel bivariate density estimate at zi can be used to define an ordering. 
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Age-specific mortality rates are very good example to illustrate this method. 
There are two major advantages in ordering via the principal component scores. 
The first, it leads to a natural method for defining visualization methods such as 
functional bagplots and functional boxplots. The second, it seems to be better 
able to identify outliers in real data. Outliers will usually be more visible in the 
principal component space than the original (functional) space [Filzmoser et al., 
2008]. Thus finding outliers in the principal component scores does no worse 
than searching for them in the original space. Often, it is the case that the first 
two principal component scores3 suffice to convey the main modes of variation.  

Because principal component decomposition is itself non-resistant to outliers, 
Hyndman and Shang [2010] applied a functional version of Croux and Ruiz-
Gazen’s [2005] robust principal component analysis, which uses a projection pur-
suit technique. This method was described and used in Hyndman and Ullah [2007]. 

The functional bagplot is based on the bivariate bagplot of Rousseeuw et al. 
[1999] applied to the first two (robust) principal component scores. The bagplot 
is constructed on the basis of the halfspace location depth denoted by d(θ,z) of 
some point θ∈R2 relative to the bivariate data cloud {zi; i = 1,...,n}. The depth 
region Dk is the set of all θ with d(θ,z) ≥ k. Since the depth measurements are 
convex polygons, we have Dk+1 ⊂ Dk. For a fixed center, the regions grow as the 
radius increases. Thus, the data points are ranked according to their depth. The 
bivariate bagplot displays the median point (the deepest location), along with the 
selected percentages of convex hulls. Any point beyond the highest percentage 
of the convex hulls is considered as an outlier. Each point in the scores bagplot 
corresponds to a curve in the functional bagplot. The functional bagplot also dis-
plays the median curve which is the deepest location, the 95% confidence inter-
vals for the median, and the 50% and 95% of surrounding curves ranking by 
depth. Any curve beyond the 95% convex hull is flagged as a functional outlier 
(see Figure 6). 

The functional highest density region (HDR) boxplot is based on the bivariate 
HDR boxplot of Hyndman [1996] applied to the first two (robust) principal 
component scores. The HDR boxplot is constructed using the Parzen-Rosenblatt 
bivariate kernel density estimate ),;(ˆ baf w . For a bivariate random sample  
{zi; i = 1,...,n} drawn from a density f, the product kernel density estimate is de-
fined by Scott [1992]:  

                                                 
3  Hyndamn and Shang [2008] found empirically that the first two principal component scores are 

adequate for outlier identification. 
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IDENTYFIKACJA WIELOWYMIAROWYCH OBSERWACJI ODSTAJĄCYCH 

– PROBLEMY I WYZWANIA METOD WIZUALIZACYJNYCH 
 
Streszczenie: Proces identyfikacji obserwacji odstających jest często rozważany jako 
wstęp do eliminacji obserwacji nietypowych ze zbiorów danych w celu uniknięcia ja-
kichkolwiek problemów w dalszej analizie danych. Tymczasem obserwacje nietypowe 
dostarczają niejednokrotnie istotnych informacji o strukturze danych lub wyjątkowych 
zdarzeniach podczas badanego okresu. Dlatego potrzebne są właściwe metody identyfi-
kacji tychże obserwacji. Literatura jest bogata w metody wykrywania obserwacji niety-
powych w jednowymiarowych przypadkach. W wielowymiarowej przestrzeni proces ten 
znacznie się komplikuje. W artykule prezentujemy wybrane metody wizualizacyjne wy-
krywania wielowymiarowych obserwacji nietypowych.  
 
Słowa kluczowe: obserwacja odstająca, odległość Mahalanobisa, efekt maskowania, 
efekt zanurzania, wizualizacja. 




