PL EN


2017 | 344 | 25-38
Article title

Workplace flexibility in Poland – the polytomous IRT models formulated by latent class approach

Authors
Content
Title variants
PL
Gotowość do zmian warunków pracy w Polsce – analiza z wykorzystaniem politomicznych modeli IRT w podejściu modelowym w taksonomii
Languages of publication
EN
Abstracts
EN
Item response theory is considered to be one of the two trends in methodological assessment of the reliability scale. In turn, latent class models can be viewed as a special case of model-based clustering, for heterogeneous multivariate discrete data. The combination of the two mentioned latent variable models concerns the assumption that the population under study is composed by homogeneous classes of individuals with very similar latent trait levels. In this approach, the model selection is based on the ordered steps consisting of selecting specific features, such as the number of latent dimensions, the number of latent classes, and the constraints on the item parameters. The main goal of the paper is to find groups of Poles not currently working for pay with similar workplace flexibility levels and to analyse the (selected) item characteristics of the International Social Survey Programme questionnaire, as well using the discretized variant of polytomous IRT models, formulated by a latent class approach.
PL
Teoria reakcji na pozycję (item response theory) zaliczana jest do jednego z dwóch nurtów metodologicznych w ocenie rzetelności skali. Z kolei analizę klas ukrytych (latent class analysis) można wpisać w nurt podejścia modelowego w taksonomii, wykorzystujący ideę mieszanek rozkładów. Modele te wykorzystywane są do analizy jakościowych zbiorów danych o niejednorodnej strukturze, w których liczba klas jest nieznana (tzw. zmienna ukryta). W ostatnim czasie na popularności zyskuje podejście modelowe w taksonomii, łączące teorię reakcji na pozycje z modelami klas ukrytych. W pracy przedstawiono zastosowanie podejścia modelowego w taksonomii wykorzystującego teorię IRT w badaniu umiejętności dostosowania się do zmian polskich respondentów poszukujących pracy. Badania przeprowadzone zostały z wykorzystaniem pakietu MultiLCIRT programu R dla danych pochodzących z Międzynarodowego Programu Sondaży Społecznych ISSP 2015.
Year
Volume
344
Pages
25-38
Physical description
Contributors
author
  • University of Economics in Katowice. Faculty of Finance and Insurance. Department of Economic and Financial Analysis
References
  • Adams R., Wilson M., Wang W. (1997), The Multidimensional Random Coefficients Logit, “Applied Psychological Measurement”, No. 21, pp. 1-24.
  • Akaike H. (1974), A New Look at Statistical Model Identification, “IEEE Transactions on Automatic Control”, No. 19, pp. 716-723.
  • Andrich D. (1978), A Rating Formulation for Ordered Response Categories, “Psychometrika”, No. 43, pp. 561-573.
  • Bacci S., Bartolucci F., Gnaldi M. (2014), A Class of Multidimensional Latent Class IRT Models for Ordinal Polytomous Item Responses, “Communication in Statistics – Theory and Methods”, No. 43, pp. 787-800.
  • Bartolucci F. (2007), A Class of Multidimensional IRT Models for Testing Unidimensionality and Clustering Items, “Psychometrika”, No. 72, 141-157.
  • Bartolucci F., Bacci S., Gnaldi M. (2014), MultiLCIRT: An R Package for Multidimensional Latent Class Item Response Models, “Computational Statistics and Data Analysis”, No. 71, pp. 971-985.
  • Bartolucci F., Bacci S., Gnaldi M. (2016a), MultiLCIRT: Multidimensional Latent Class Item Response Theory Models. R Package Version 2.10, http://CRAN.R-project.org/package=MultiLCIRT (access: 6.06.2017).
  • Bartolucci F., Bacci S., Gnaldi M. (2016b), Statistical Analysis of Questionnaires. A Unified Approach Based on R and Stata, A Chapman&Hall, CRC Press, Boca Raton.
  • Birnbaum A. (1968), Some Latent Trait Models and Their Use in Inferring an Examinee’s Ability [in:] F.M. Lord, M.R. Novick (eds.), Statistical Theories of Mental Test Scores, Addison-Wesley, Reading, MA, pp. 395 479.
  • Czapiński J., Panek T., eds. (2015), Diagnoza społeczna 2015. Warunki i jakość życia Polaków (raport), Rada Monitoringu Społecznego, Warszawa, http://www.diagnoza.com/pliki/raporty/Diagnoza_raport_2015.pdf (access: 5.01.2017).
  • Dempster A.P., Laird N.P., Rubin D.B. (1977), Maximum Likelihood for Incomplete Data via the EM Algorithm (with Discussion), “Journal of the Royal Statistical Society”, No. 39, series B, pp. 1-38.
  • Genge E. (2016), Teoria reakcji na pozycję w podejściu modelowym w taksonomii / Item Response Theory in Model-based Clustering, “Ekonometria, Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu”, No. 1(51), pp. 9-19, DOI 10.15611/ekt.2016.1.01.
  • Hemker B.T., van der Ark L.A., Sijtsma K. (2001), On Measurement Properties of Continuation Ration Models, “Psychometrika”, No. 66, pp. 487-506.
  • Masters G. (1982), A Rasch Model for Partial Credit Scoring, “Psychometrika”, No. 47, pp. 149-174.
  • Muraki E. (1990), Fitting a Polytomous Item Response Model to Likert-type Data, “Applied Psychological Measurement”, No. 14, pp. 59-71.
  • Muraki E. (1997), A Generalized Partial Credit Model [in:] W. van der Linden, R.K. Hambleton (eds.), Handbook of Modern Item Response Theory, Springer, New York, pp. 153-164.
  • Rasch G. (1960), Probabilistic Models for Some Intelligence and Attainment Tests, Danish Institute for Educational Reserch, Copenhagen.
  • Semejima F. (1969), Estimation of Ability Using a Response Pattern of Graded Scores, Psychometric Monograph No. 17, Psychometric Society, Richmond, VA.
  • Semejima F. (1995), Acceleration Model in the Heterogeneous Case of the General Graded Response Model, “Psychometrika”, No. 60, pp. 549-572.
  • Schwarz G. (1978), Estimating the Dimension of a Model, “Annals of Statistics”, No. 6, pp. 461-464.
  • Tutz G. (1990), Sequential Item Response Models with an Ordered Response, “British Journal of Mathematical and Statistical Psychology”, No. 43, pp. 39-55.
  • Van der Ark L.A. (2001), Relationships and Properties of Polytomous Item Response Theory Models, “Applied Psychological Measurement”, No. 25, pp. 273-282.
  • Zhang J. (2004), Comparison of Unidimensional and Multidimensional Approaches to IRT Parameter Estimation, ETS Research Report Series, RR-04-44, pp. 1-42.
Document Type
Publication order reference
Identifiers
ISSN
2083-8611
YADDA identifier
bwmeta1.element.cejsh-88e6f7dd-4c83-4eae-821d-917e0715e615
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.