PL EN


2015 | 243 | 295-307
Article title

A Dynamic Risk Assessment for Decision Support Systems in the Maritime Domain

Content
Title variants
PL
Dynamiczna ocena ryzyka dla systemów wspomagania decyzji w sektorze morskim
Languages of publication
EN
Abstracts
PL
Transport morski jest jednym z kluczowych elementów globalnego handlu. Obecnie ok. 90% towarów jest przewożonych drogą morską. Wraz ze wzrostem znaczenia światowego handlu morskiego pojawia się potrzeba oceny ryzyka stwarzanego przez statki. W artykule zaprezentowano propozycję podejścia do analizy ryzyka morskiego, opierając się na szacowaniu w czasie rzeczywistym poziomu ryzyka pojedynczego statku, a tym samym oceny bezpieczeństwa morskiego systemu transportowego w krótkim horyzoncie czasowym. Podejście skupia się na dynamicznej ocenie ryzyka, bazując na szeregu czynników i zmiennych odnoszących się do ryzyka. Zaproponowana metoda ma na celu ułatwić porównanie statków z punktu widzenia ryzyka, jakie stwarzają. Może ona być zastosowana w systemach wspomagania decyzji jako klasyfikator statków wymagających szczególnej uwagi. W artykule przedstawiono kilka scenariuszy biznesowych, w których proponowane podejście do analizy ryzyka statku może być stosowane.
EN
The oversea shipping is nowadays one of the key elements of the global trade. Currently about 90% of cargo is carried by sea. With the growing importance of the world seaborne trade, the need to assess the risk posed by ships appears. The paper presents an approach to analyze the maritime risk, by estimating in realtime the risk level of an individual ship, and thus assess the security of maritime transportation system in the short-term horizon. The approach is based on a dynamic evaluation of risk, using various risk factors and variables. The aim of the approach is to facilitate the automatic comparison of ships from the point of view of risk they pose. It can be used in decision support systems to classify ships, which require a special attention. The paper presents several business scenarios, where the approach to risk analysis can be applied.
Year
Volume
243
Pages
295-307
Physical description
Contributors
References
  • Abramowicz-Gerigk T., Burciu Z., Kamiński P. (2013), Kryteria akceptowalności ryzyka w żegludze morskiej, "Prace Naukowe Politechniki Warszawskiej", Iss. 96.
  • ABS (2000), Guidance notes on Risk Assessement Applications for the Marine and Offshore Oil and Gas Industries, American Bureau of Shipping, Houston.
  • Ansar A., Li Y., Zhang J. (2014), Variational Bayesian Inference for Big Data Marketing Models 1, http://english.ckgsb.edu.cn/sites/default/files/files/Variational BayesFirstSubmission.pdf (access: 27.05.2015).
  • Balmat J.F., Lafont F., Maifret R., Pessel N. (2009), MAritime RISk Assessment (MARISA), a fuzzy approach to define an individual ship risk factor, "Ocean Engineering", Iss. 36.
  • Berle O., Asbjørnslett B.E., Rice J.B. (2011), Formal Vulnerability Assessment of a maritime transportation system, "Reliability Engineering and System Safety", Iss. 96(6).
  • Carson-Jackson J. (2012), Satellite AIS - Developing Technology or Existing Capability?, "Journal of Navigation", Iss. 65(02).
  • Cross R., Ballesio J. (2003), 111 ABS Technical papers: A quantitative risk assessment model for oil tankers, "Transactions - Society of Naval Architects and Marine Engineers", Iss. 111.
  • Del Pozo F. et al. (2010), Maritime Surveillance in Support of CSDP. The Wise Pen Team final report to EDA Steering Board, https://www.eda.europa.eu/infohub/ news/2010/04/25/wise_pen_team_report_on_maritime_surveillance_marsur (access: 5.05.2014).
  • Eleye-Datubo A.G., Wall A., Wang J. (2008), Marine and offshore safety assessment by incorporative risk modeling in a fuzzy-Bayesian network of an induced mass assignment paradigm, "Risk Analysis", Iss. 28(1).
  • Ellis J., Forsman B., Gehl S., Langbecker U., Riedel K., Sames P.C. (2008), A risk model for the operation of container vessels, "WMU Journal of Maritime Affairs", Iss. 7(1).
  • Elsayed T. (2009), Fuzzy inference system for the risk assessment of liquefied natural gas carriers during loading/offloading at terminals, "Applied Ocean Research", Iss. 31(3).
  • Fagerholt K. (2004), A computer-based decision support system for vessel fleet scheduling - Experience and future research, "Decision Support Systems", Iss. 37(1).
  • Fagerholt K., Lindstad H. (2007), TurboRouter: An Interactive Optimisation-Based Decision Support System for Ship Routing and Scheduling, "Maritime Economics & Logistics", Iss. 9.
  • Gerigk M. (2012), Ocena ryzyka i zarządzanie bezpieczeństwem w czasie katastrofy obiektu oceanotechnicznego lub statku na morzu, "Prace Naukowe Politechniki Warszawskiej", Iss. 82.
  • Goerlandt F., Montewka J. (2015), Maritime transportation risk analysis: Review and analysis in light of some foundational issues, "Reliability Engineering & System Safety", Iss. 138.
  • IMO (2012), International Shipping Facts and Figures, International Maritime Organization, http://www.imo.org/KnowledgeCentre/ShipsAndShippingFactsAnd Figures/TheRoleandImportanceofInternationalShipping/Documents/International% 20Shipping%20-%20Facts%20and%20Figures.pdf (access: 29.04.2015).
  • Kowalski J., Kozera J. (2009), Mapa zagrożeń bezpieczeństwa energetycznego RP w sektorach ropy naftowej i gazu ziemnego, BBN, Warszawa, http://www.bbn.gov.pl/download/1/ 1927/9-10mapazagrozenbezpieczenstwaenergetycznegorp.pdf (access: 31.03.2015).
  • Lam J. (2012), Rough Set Approach to Marine Cargo Risk Analysis, International Forum on Shipping, Ports and Airports (IFSPA) 2012: Transport Logistics for Sustainable Growth at a New Level, http://www.stl.polyu.edu.hk/ifspa2012/Papers/M26.pdf (access: 29.04.2015).
  • Liu J., Yang J., Wang J., Sii H. (2005), Engineering System Safety Analysis and Synthesis Using the Fuzzy Rule-based Evidential Reasoning Approach, "Quality and Reliability Engineering International", Iss. 21(4).
  • Pietrzykowski Z. (2011), Navigational decision support system as an element of intelligent transport systems, "Scientific Journals Maritime University of Szczecin", Iss. 25(97).
  • Riveiro M. (2011), Visual Analytics for Maritime Anomaly Detection, PhD Thesis, Orebro University, http://swepub.kb.se/bib/swepub:oai:DiVA.org:oru-12783?tab2= abs&language=en (access: 1.02.2015).
  • Soares C., Teixeira A.P. (2001), Risk assessment in maritime transportation, "Reliability Engineering and System Safety", Iss. 74(3).
  • Szymanek A. (2008), Risk acceptation principles in transport, "Journal of KONBiN", Iss. 5(2).
  • Trucco P., Cagno E., Ruggeri F., Grande O. (2008), A Bayesian Belief Network modelling of organisational factors in risk analysis: A case study in maritime transportation, "Reliability Engineering and System Safety", Iss. 93(6).
  • UNCTAD (2015), Review of maritime tranport 2014, http://unctad.org/en/Publications Library/rmt2014_en.pdf (access: 15.05.2015).
  • Urbański J., Morgaś W., Specht C. (2008), Bezpieczeństwo morskie - ocena i kontrola ryzyka, "Zeszyty Naukowe Akademii Marynarki Wojennej", Iss. 2(173).
Document Type
Publication order reference
Identifiers
ISSN
2083-8611
YADDA identifier
bwmeta1.element.cejsh-98ed0334-7627-440b-9409-9e6ccd319d6d
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.