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Abstract 
 

The paper introduces a new software package, MOLPTOL, for 

sensitivity analysis in multi-objective linear programming. In this 

application, which is available for free of charge on the web page (https:// 

sites.google.com/view/molptol), the tolerance approach as a measure of 

sensitivity is used. The motivation for creating MOLPTOL is the lack of 

such tools to date. MOLPTOL is novel for multi-criteria decision-making 

methods based on sensitivity analysis. The paper presents some new 

computational methods for obtaining the supremal tolerances as well. 
 
 

Keywords: multi-objective linear programming, sensitivity analysis, computer software. 
 

1 Introduction 
 

The general idea of using sensitivity analysis in optimization aims to deal with the 

uncertainty and imprecise data of the considered model. Sensitivity analysis plays an 

important role in decision problems as well.  Usually it is used in the case of 

perturbations of parameters which often appears in real-life problems. In this paper 

we consider sensitivity analysis in multiple-objective linear programming (MOLP) 

problems. Since many constraints and objectives are formulated in a linear way, 

MOLP problems are often used in practice. Here, we focus on maintaining 

efficiency of a given efficient solution taking into account the perturbation that can 

be applied simultaneously to objective functions coefficients.  
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The main drawback of sensitivity analysis in MOLP is the lack of tools in 

multi-criteria decision making problems based on sensitivity analysis. In general, 

such tools should be easily applied by a decision maker. Hence, software which 

helps to analyze these problems would be a significant simplification of the 

decision process. Moreover, the computational methods to obtain the measures 

of sensitivity (for example, the supremal tolerances) need development. Due to 

the above disadvantages in this field, this paper provides new computational 

methods of sensitivity analysis and shows their properties. Based on these 

methods, MOLPTOL – a new software package for obtaining supremal 

tolerances in MOLP problems – is presented. Moreover, MOLPTOL can be also 

used as a tool in decision problems in which sensitivity analysis is important for 

the decision maker. In such problems the perturbation of objective functions 

coefficients is taken into account. The solution proposed by MOLPTOL can be 

easily used on the dedicated web page: https://sites.google.com/view/molptol. 

The paper consists of the following sections: section 1 provides the 

introduction; section 2 presents related papers related to the subject of the paper; 

section 3 introduces the basic objects and notation; section 4 presents the 

theoretical background of computation methods used in MOLPTOL; section 5 

shows the MOLPTOL software; section 6 describes a market model; section 7 

illustrates an application of MOLPTOL in the market model; and the final 

section summarizes the paper. 
 

2  Related papers 
 

The following approaches to sensitivity analysis in MOLP are worth 

mentioning: 

− the tolerance approach, 

− the range set approach, 

− the standard approach, 

− the robust approach, 

− the partial preference relations approach. 

Let us shortly describe the above approaches by presenting the related papers.  

The tolerance approach aims to find a value (tolerance) representing the 

perturbation that can be applied simultaneously to objective functions 

coefficients without affecting the efficiency of a given efficient solution. We 

distinguish two main forms of the tolerance approach: additive and percentage 

tolerances. In the case of the additive tolerance we focus on additive 

perturbations. The percentage tolerance approach, however, represents the 

relative (percentage) perturbations.  This approach in linear programming comes 

from Wendell (1982). The use of the tolerance approach in MOLP was proposed 
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by Hansen, Labbe and Wendell (1989). Hladik (2008a, 2008b) develops this 

concept in theoretical and computational ways, while Borges and Antunes 

(2002) present sensitivity analysis of the weights in MOLP. Applications of the 

tolerance approach in the transportation problem can be found in the papers by 

Paratane and Bit (2020), as well as Badra (2004, 2006).  

The range set approach of to sensitivity analysis comes from linear 

programming theory for sensitivity analysis of optimal solutions, see Gass 

(1975) and Gal (1995). The use of this approach in MOLP was proposed by 

Benson (1985). The range set approach aims to find the values of parameter that 

can be applied to a given direction of the objective coefficients without affecting 

the efficiency. Methods of computing the range set in MOLP are given by 

Hladik et al. (2019).  

The standard approach to sensitivity analysis is the extension of this method in 

linear programming (Gal, 1995). Initial research on using this approach to MOLP 

was done by Sitarz (2010, 2011). The standard approach aims to find values  

(a parameter set) of one selected objective function coefficient that can be applied 

without affecting the efficiency. Pourkarimi (2015) proposes building a ranking of 

all efficient faces by using stability measures based on standard sensitivity analysis.  

The robust approach presented by Georgiev, Luc and Pardalos (2013) 

consists of analysis of the efficient solutions that remain efficient when the 

objective matrix is slightly perturbed by means of the Euclidean norm for the 

matrix of objective functions coefficients. Moreover, in that paper we find 

algorithms to compute the radius of robustness. In turn, Pourkarimi and 

Soleimani-Damaneh (2016) propose the so-called robustness order which is 

defined as the interiority order of the matrix of objective functions coefficients.  

In the paper by Goberna et al. (2015), MOLP problems with uncertainty both in 

the objective function and the constraints are considered.  

The partial preference relations introduced by Podinovski (2012) present 

sensitivity analysis in the form of a parametric partial order. This approach can 

be applied to the sensitivity analysis by taking into account the changes of 

parameters of the order. Moreover, Podinovski and Potapov (2019) expand this 

theory by introducing parameters connected with boundaries of intervals for 

criteria value tradeoffs uncertainty. 
 

3  MOLP problem and tolerance approach 
 

In this paper, we consider the following MOLP problem:  
 

                                                   𝑉𝑀𝑎𝑥 {𝐶𝑥: 𝑥 ∈ 𝑋},                                          (1) 
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where 𝑋 = {𝑥 ∈ ℝ𝑛: 𝐴𝑥 ≤ 𝑏} ⊂ ℝ𝑛 is a given set, with 𝐴 ∈ ℝ𝑚,𝑛 and 𝑏 ∈ ℝ𝑚; 

matrix 𝐶 ∈ ℝ𝑘,𝑛 is given by the linear objective functions 𝑐𝑖𝑥 for 𝑖 = 1, … , 𝑛. 

One can find a detailed description of MOLP problems in books by Steuer 

(1986) or Zeleny (1982). A feasible solution 𝑥∗ ∈ 𝑋 is called an efficient 

solution to (1) if there is no 𝑥 ∈ 𝑋 such that: 
 

𝐶𝑥∗ ≤ 𝐶𝑥 ∧   𝐶𝑥∗ ≠ 𝐶𝑥. 
 

We can check efficiency of the given feasible solution by using the following 

theorem, Ehrgott (2005). 
 

Theorem 1. A feasible solution 𝑥∗ is efficient if and only if the following linear 

program: 
 

𝑀𝑎𝑥  𝑒𝑇𝑤 

𝐶𝑥 −  𝐼𝑤 = 𝐶𝑥∗ 

𝑥 ∈ 𝑋 

𝑤 ≥ 0, 

where 𝐼 is identity matrix and 𝑒 is vector of ones, has an optimal objective 

function value of zero.  
 

We consider the sensitivity in the sense of the remaining efficiency of a given 

feasible solution 𝑥∗ ∈ 𝑋. Furthermore, we analyze the sensitivity analysis in  

the case of changing matrix 𝐶. Let matrix 𝐺 ∈ ℝ𝑛,𝑘 be given. We introduce  

a 𝛿, 𝐺-neighbourhood of matrix 𝐶 = [𝑐𝑖𝑗] as follows: 
 

𝑂𝛿,𝐺(𝐶) = {𝐷 = [𝑑𝑖𝑗] ∈ ℝ𝑛,𝑘:  |𝑑𝑖𝑗 − 𝑐𝑖𝑗| < 𝛿|𝑔𝑖𝑗|  if 𝑔𝑖𝑗 ≠ 0,   𝑑𝑖𝑗 = 𝑐𝑖𝑗   if 𝑔𝑖𝑗 = 0}. 
 

In this case we consider the following problem obtained from (1) by using 

𝐷 ∈ 𝑂𝛿,𝐺(𝐶):  
 

                                                  𝑉𝑀𝑎𝑥 {𝐷𝑥: 𝑥 ∈ 𝑋}.                                           (2) 
 

Definition 1. A tolerance for an efficient solution 𝑥∗ is any real 𝛿 such that 𝑥∗ 

remains efficient to (2) for all 𝐷 ∈ 𝑂𝛿,𝐺(𝐶). The supremal tolerance is denoted 

by 𝛿𝑠𝑢𝑝. 
 

We look closer at the two types of the tolerance presented above: an additive 

tolerance and percentage tolerance. These tolerances represent the additive 

perturbation and the percentage perturbation of all coefficients of matrix 𝐶.  
 

Definition 2. An additive tolerance is a tolerance for matrix 𝐺 consisting only of 

ones: 

𝑔𝑖𝑗 = 1  for all 𝑖, 𝑗. 
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Definition 3. A percentage tolerance is a tolerance for matrix 𝐺 consisting of |𝑐𝑖𝑗|: 
 

𝑔𝑖𝑗 = |𝑐𝑖𝑗|  for all   𝑖, 𝑗. 

 

4  Computation methods used in MOLPTOL 
 

Computing the supremal tolerance is based on problem (3) given by Hladik and 

Sitarz (2013): 
 

𝛿𝑠𝑢𝑝 = 𝑀𝑖𝑛  𝛿 

𝐴1(𝑥 − 𝑥∗) ≤ 0 

𝐶(𝑥 − 𝑥∗) +  𝛿𝐺|𝑥 − 𝑥∗| ≥ 0 

𝑒𝑇  𝐺|𝑥 − 𝑥∗| = 1 

𝛿 ≥ 0, 

(3) 

 

where 𝐴1 is a submatrix of 𝐴 consisting only of the active constraints for 𝑥∗ and 

𝑒 is a vector of ones. Moreover, 𝐺 is a given matrix representing the method of 

perturbation of the coefficients of matrix 𝐶 (the way of introducing matrix G 

was presented in section 3).  
 

Problem (3) is NP hard, thus we are looking to improve it. In MOLPTOL, we 

can improve computation by using the properties of (3) and two methods: 

decomposition procedure and bisection procedure. The detailed descriptions of 

the above methods are given in the next subsections.  

 

4.1  Decomposition procedure  

 

Computing the supremal tolerance by using the decomposition method is based 

on the decomposition of problem (3) into 2𝑛 simpler problems, according to the 

signs of (𝑥 − 𝑥∗)𝑖. The composition is given by a vector 𝑧 ∈ {±1}𝑛. For each 

vector 𝑧 we build the following problem: 
 

𝛿𝑧 = 𝑀𝑖𝑛  𝛿 

𝐴1(𝑥 − 𝑥∗) ≤ 0 

𝐶(𝑥 − 𝑥∗) +  𝛿𝐺𝑑𝑖𝑎𝑔(𝑧)(𝑥 − 𝑥∗) ≥ 0 

𝑑𝑖𝑎𝑔(𝑧)(𝑥 − 𝑥∗) ≥ 0 

𝑒𝑇𝐺𝑑𝑖𝑎𝑔(𝑧)(𝑥 − 𝑥∗) = 1 

𝛿 ≥ 0, 

(4) 

where matrix 𝑑𝑖𝑎𝑔(𝑧) is a diagonal matrix with the coefficients 𝑧𝑖. 

The supremal tolerance is given by the following equation: 
 

𝛿𝑠𝑢𝑝 = 𝑀𝑖𝑛𝑧∈{±1}𝑛    𝛿𝑧. 
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Problem (4), proposed by Hladik and Sitarz (2013), is not NP-hard, but it is 

still difficult to solve. Thus, we propose the following method which is based on 

solving the sequence of linear programming problems to obtain 𝛿𝑠𝑢𝑝.   
 

Theorem 2. The feasible set of problem (4) with 𝛿 = 𝛿̅ is non-empty if and only 

if 𝛿𝑧 ≤ 𝛿̅. 
 

Proof. Let us assume that the feasible set of problem (4) for 𝛿 = 𝛿̅ is non-empty. 

In this case, there exists a pair (𝛿̅, �̅�) which is a feasible solution for (4). Since 𝛿𝑧 

is the minimum of all feasible 𝛿, we have 𝛿𝑧 ≤ 𝛿̅. 

Now, let us assume that 𝛿𝑧 ≤ 𝛿̅. Hence, 𝛿𝑧 is an optimal solution for (4); it is 

also a feasible solution for (4) with some 𝑥𝑧. Moroeover, by using the inequality: 
 

𝑑𝑖𝑎𝑔(𝑧)(𝑥𝑧 − 𝑥∗) ≥ 0, 

we obtain: 
 

0 ≤ 𝐶(𝑥𝑧 − 𝑥∗) + 𝛿𝑧𝐺𝑑𝑖𝑎𝑔(𝑧)(𝑥𝑧 − 𝑥∗) ≤ 𝐶(𝑥𝑧 − 𝑥∗) + 𝛿̅𝐺𝑑𝑖𝑎𝑔(𝑧)(𝑥𝑧 − 𝑥∗). 
 

Thus, the pair (𝛿̅, 𝑥𝑧) fulfils the above condition of (4). Furthermore, the rest 

of the conditions of (4) are fulfilled as well. Thus (𝛿̅, 𝑥𝑧) is a feasible solution 

for (4). 
 

Corollary 1. The feasible set of problem (4) is empty with 𝛿 = 𝛿̅ if and only if  

𝛿𝑧 > 𝛿̅. 
 

We use the following theorem to check if the feasible set of problem (4) is 

non-empty. 
 

Theorem 3. The feasible set for (4) with 𝛿 = 𝛿̅ is non-empty if and only if the 

following linear problem: 

𝑀𝑖𝑛  𝑣 

𝐴1(𝑥 − 𝑥∗) ≤ 0 

−𝐶(𝑥 − 𝑥∗) −  𝛿̅𝐺𝑑𝑖𝑎𝑔(𝑧)(𝑥 − 𝑥∗) ≤ 0 

−𝑑𝑖𝑎𝑔(𝑧)(𝑥 − 𝑥∗) ≤ 0 

𝑒𝑇𝐺𝑑𝑖𝑎𝑔(𝑧)(𝑥 − 𝑥∗) + 𝑣 = 1 

𝑣 ≥ 0, 

(5) 

 

has an optimal objective function value of zero.  
 

Proof. By substituting 𝛿 = 𝛿̅ into problem (4) and introducing a new non- 

-negative variable 𝑣, we obtain (after some operations) the following linear 

constraints for the feasible set of (4): 
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𝐴1(𝑥 − 𝑥∗) ≤ 0 

−𝐶(𝑥 − 𝑥∗) −  𝛿̅𝐺𝑑𝑖𝑎𝑔(𝑧)(𝑥 − 𝑥∗) ≤ 0 

−𝑑𝑖𝑎𝑔(𝑧)(𝑥 − 𝑥∗) ≤ 0 

𝑒𝑇𝐺𝑑𝑖𝑎𝑔(𝑧)(𝑥 − 𝑥∗) + 𝑣 = 1. 
 

By using Proposition 6.15 from Ehrgott (2005), the above linear set of 

constraints is non-empty if and only if problem (5) has an optimal objective 

function value of zero.  
 

Remark 1. The main property of problem (5) is that it is a linear programming 

problem, thus it is easy to solve. 

 

4.2  Sets of vectors 𝒛 ∈ {±𝟏}𝒏 

 

Let 𝑍 denote the set of all vectors 𝑧 ∈ {±1}𝑛. The number of elements of set 𝑍 is 

very important: it can reduce the computation time. Thus, we focus on 𝑍 more 

closely. In this subsection we present methods to narrow 𝑍. First, let us present 

some observations (Hladik and Sitarz, 2013): 

(i) If condition 𝑥 ≥ 0 is assumed, then for i such that 𝑥𝑖
∗ = 0, we set 𝑧𝑖 = 1 (in 

other words we omit the case of 𝑧𝑖 = −1).  

By setting 𝑦 = 𝑑𝑖𝑎𝑔(𝑧)(𝑥 − 𝑥∗) we obtain: 

(ii) Let 𝑖 ∈ {1, … , 𝑛}. If min𝑦{𝑦𝑖 : 𝐴1𝑦 ≤ 0} ≥ 0, then we set 𝑧𝑖 = 1 (we omit 

𝑧𝑖 = −1). 

(iii) Let 𝑖 ∈ {1, … , 𝑛}. If max𝑦{𝑦𝑖 : 𝐴1𝑦 ≤ 0} ≤ 0, then we set 𝑧𝑖 = −1 (we 

omit 𝑧𝑖 = 1). 

Applying (i), (ii) and (iii), we obtain the initial set 𝑍0 ⊆ 𝑍, for which:  
 

                                   𝛿𝑠𝑢𝑝 = 𝑀𝑖𝑛𝑧∈𝑍   𝛿𝑧  = 𝑀𝑖𝑛𝑧∈𝑍0
   𝛿𝑧.                               (6) 

 

Now, we proceed with a new observation used in our method which is based 

on problem (5) and theorems 2 and 3. By taking into account this new 

observation we can omit some vectors 𝑧 in formula (6). Suppose that we have  

a set  𝑍𝑖 ⊆ 𝑍 and:  

                                             𝑀𝑖𝑛𝑧∈𝑍 𝛿𝑧  =  𝑀𝑖𝑛𝑧∈𝑍𝑖
 𝛿𝑧.                                   (7) 

 

Moreover, let 𝛿̅ be given (which is the approximate value of 𝛿𝑠𝑢𝑝).  

 

Definition 4. Let �̅�𝑖 be defined as follows:  
 

�̅�𝑖 = {𝑧 ∈ 𝑍𝑖: problem (5) has an optimal objective 
 function value of zero with 𝑧 and 𝛿̅ }. 

 

By using definition 4, we formulate the next theorem.  
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Theorem 4. If �̅�𝑖 ≠ ∅, then:  
 

𝛿𝑠𝑢𝑝 ≤ 𝛿̅  and  𝑀𝑖𝑛𝑧∈𝑍𝑖
 𝛿𝑧 = 𝑀𝑖𝑛𝑧∈𝑍𝑖

 𝛿𝑧. 
 

Otherwise, 𝛿̅ ≤ 𝛿𝑠𝑢𝑝. 

 

Proof. If �̅�𝑖 ≠ ∅, then there exists 𝑧̅ such that problem (5) has an optimal 

objective function value of zero with 𝛿̅. Thus, by using theorems 2 and 3, 𝛿�̅� ≤ 𝛿̅. 

Moreover, by using the fact that: 
 

𝛿𝑠𝑢𝑝 = 𝑀𝑖𝑛𝑧∈{±1}𝑛    𝛿𝑧, 
 

we have 𝛿𝑠𝑢𝑝 ≤ 𝛿�̅� ≤ 𝛿̅, which means that 𝛿𝑠𝑢𝑝 ≤ 𝛿̅. Moreover, for all 𝑧 ∉ �̅�𝑖 

we have (theorem 2) 𝛿̅ < 𝛿𝑧, which means that 𝛿�̅� < 𝛿𝑧, thus: 
 

𝑀𝑖𝑛𝑧∈𝑍𝑖
 𝛿𝑧 ≤ 𝛿�̅� ≤ 𝑀𝑖𝑛𝑧∉𝑍𝑖

 𝛿𝑧. 
 

Since 𝑍𝑖 = �̅�𝑖 ∪ �̅�𝑖
′  we have:  

 

𝑀𝑖𝑛𝑧∈𝑍𝑖
 𝛿𝑧 = 𝑀𝑖𝑛𝑧∈𝑍𝑖

 𝛿𝑧. 
 

If �̅�𝑖 = ∅, then for all 𝑧 ∈ 𝑍𝑖 we have (theorem 2) 𝛿̅ < 𝛿𝑧, thus by using (7) 

we obtain 𝛿̅ ≤ 𝛿𝑠𝑢𝑝. 

 

Remark 2. The main property of theorem 4 is the fact that it is possible to 

reduce set Z in order to find 𝛿𝑠𝑢𝑝. We omit vectors z for which problem (5) does 

not have an optimal objective function value of zero. 

 

4.3  An algorithm for obtaining 𝜹𝒔𝒖𝒑  

 

In this algorithm we use the bisection procedure for seeking the supremal 

tolerance. While the idea of bisection is taken from the optimization numerical 

methods, in the case of supremal tolerance, the bisection has been adopted 

together with theorem 4. Figure 1 presents the algorithm to obtain 𝛿𝑠𝑢𝑝. Let us 

introduce the parameters and their initial values: 

𝑖 – index for steps, 

𝑍𝑖 – the set of vectors z considered in step 𝑖; we start with 𝑍0 defined in    

      subsection 4.2, 

𝛿𝐿 – the left endpoint of interval; we have the initial constraint 𝛿𝑠𝑢𝑝 ≥ 0;  

     moreover, in most cases, the supremal tolerance is close to zero; thus, the  

     initial value of 𝛿𝐿 is equal to zero, 

𝛿𝑅 – the right endpoint of interval; according to our numerical experiments, the  

    initial value of 𝛿𝑅 should be taken as follows: 𝛿𝑅 = max𝑖,𝑗|𝑐𝑖𝑗|,  

𝛿̅ – the middle-point of interval; from the nature of the bisection method the  

  initial value of 𝛿̅ is equal to (𝛿𝐿 + 𝛿𝑅)/2, 
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𝑆 – number of steps; the precision of the approximate value of 𝛿𝑠𝑢𝑝 is related  

  to the number of steps; to have the error equal to  = 0.001, we should take   

  S =  [log2( R/)] + 1. 

 

Step i ≥ 0: If 𝑖 = 𝑆, then the approximate value of 𝛿𝑠𝑢𝑝 is equal to 𝛿̅,  
otherwise proceed as follows: 

  Check if �̅�𝑖 ≠ ∅    

   If yes, then set: 

 𝛿𝑅 = 𝛿̅   
    𝛿̅ = (𝛿𝐿 + 𝛿𝑅)/2  

     𝑖 = 𝑖 + 1 

    𝑍𝑖 = �̅�𝑖−1 

    and go to Step 𝑖 
   If not, then set: 

 𝛿𝐿 = 𝛿̅   
    𝛿̅ = (𝛿𝐿 + 𝛿𝑅)/2  

    𝑖 = 𝑖 + 1 

    𝑍𝑖 = 𝑍𝑖−1   

    and go to Step 𝑖 
 

Figure 1: Algorithm to obtain 𝛿𝑠𝑢𝑝 

 

5  MOLPTOL – a short description of the software 

 

MOLPTOL is a software package that runs on Windows systems with the .NET 

4.0 platform installed. It handles the problem in the form of (1). Moreover, the 

non-negativity condition (𝑥  0) can be added by one click. The sensitivity 

analysis of a given vector 𝑥∗ proceeds by means of the two approaches: the 

supremal additive tolerance and the supremal percentage tolerance. Moreover, 

MOLPTOL uses Express, a numerical tool (free of charge) that is a version of 

the Microsoft Solver Foundation library (MSF). A description of this library can 

be found on the web page:  http://msdn.microsoft.com.  The software can be 

used free of charge on the web page: https://sites.google.com/view/molptol.  

 

6  A market model  
 

In economic theory, there is a market model studied in isolation (Mas-Colell, 

Whinston and Green, 1995). We consider a model with 𝑁 goods and 𝑀 agents.  

The initial endowment of agent 𝑖 is given by vector 𝑒𝑖 = (𝑒1,𝑖 , … , 𝑒𝑁,𝑖). Let 𝑢𝑖 

denote the linear utility function of agent 𝑖. Each agent wants to maximize  

his utility function. The feasible allocations are the vectors 
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𝑥 = (𝑥1,1, … , 𝑥𝑁,1, … … , 𝑥1,𝑀, … , 𝑥𝑁,𝑀) ≥ 0 which for all 𝑖 ∈ {1, … , 𝑁} satisfy 

the following condition: 

∑ 𝑥𝑖,𝑗

𝑀

𝑗=1

= ∑ 𝑒𝑖,𝑗

𝑀

𝑗=1

 

 

By using the above description, we can formulate the following MOLP 

problem:  

𝑉𝑀𝑎𝑥  [
𝑢1(𝑥1,1, … , 𝑥𝑁,1),

…

𝑢𝑀(𝑥1,𝑀 , … , 𝑥𝑁,𝑀)

] 

∑ 𝑥𝑖,𝑗

𝑀

𝑗=1

= ∑ 𝑒𝑖,𝑗

𝑀

𝑗=1

,   for 𝑖 ∈ {1, … , 𝑁} 

𝑥1,1, … , 𝑥𝑁,1, … … , 𝑥1,𝑀 , … , 𝑥𝑁,𝑀 ≥ 0. 

(8) 

 

The efficient solutions of problem (8) are called the Pareto optimal 

allocations. The decision problem in the market model is to find an allocation 

which is Pareto optimal and satisfies additional decision maker’s preferences.  

 

7  An application of MOLPTOL in the market model  
 

The analysis of the market model can be done by means of sensitivity analysis of 

the initial data, which may be imprecise and changeable, especially the 

coefficients of the utility functions. We look for the Pareto allocations which are 

the least sensitive by means of changing these coefficients. Thus, by using 

MOLPTOL, we check if the given allocations are Pareto optimal. Moreover, we 

compute the supremal tolerances for these allocations. For further analysis, we 

recommend the allocation with the biggest supremal tolerance. We proceed  

to such an analysis by using MOLPTOL in the following case scenario.  

We consider a model with three goods, three agents, and the following initial 

endowments: 

𝑒1 = (2,4,2), 𝑒2 = (2,2,2), 𝑒3 = (6,2,2). 
 

Moreover, the agents have the following utility functions: 
 

𝑢1(𝑥1,1, 𝑥2,1, 𝑥3,1) = 𝑥1,1  +  4𝑥2,1  +  5𝑥3,1, 
 

𝑢2(𝑥1,2, 𝑥2,2, 𝑥3,2) = 𝑥1,2 + 𝑥2,2, 
 

𝑢3(𝑥1,3, 𝑥2,3, 𝑥3,3) = 𝑥2,3 + 𝑥3,3. 
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The MOLP problem connected with the above market model takes the 

following form: 
 

𝑉𝑀𝑎𝑥 [

𝑥1,1  +  4𝑥2,1  +  5𝑥3,1 

𝑥1,2 + 𝑥2,2

𝑥2,3  +  𝑥3,3

] 

𝑥1,1 + 𝑥2,1 + 𝑥3,1 = 10 

𝑥1,2 + 𝑥2,2 + 𝑥3,2 = 8 

𝑥1,3 + 𝑥2,3 + 𝑥3,3 = 6 

𝑥1,1, 𝑥2,1, 𝑥3,1, 𝑥1,2, 𝑥2,2, 𝑥3,2, 𝑥1,3, 𝑥2,3, 𝑥3,3 ≥ 0. 

(9) 

 

The initial parameters for MOLPTOL are as follows: 
 

𝐶 = [
1 4 5    0 0 0    0 0 0
0 0 0    1 1 0    0 0 0
0 0 0    0 0 0    0 1 1

], 

 

𝐴 = [
1 0 0    1 0 0    1 0 0
0 1 0    0 1 0    0 1 0
0 0 1    0 0 1    0 0 1

],  𝑏 = [
10
8
6

]. 

 

Moreover, the non-negativity condition is assumed.  Let us analyze the following 

allocations: 
 

𝑥𝑎 = (2, 4, 2, 8, 2, 0, 0, 2, 4), 

𝑥𝑏 = (0, 0, 6, 10, 0, 0, 0, 8, 0), 

𝑥𝑐 = (5, 0, 0, 5, 0, 0, 0, 8, 6). 
 

By using MOLPTOL we obtain that: 

− allocation 𝑥𝑎 is not efficient, 

− allocation 𝑥𝑏 is efficient and the supremal percentage tolerance is equal to 

5.57%, 

− allocation 𝑥𝑐 is efficient and the supremal percentage tolerance is equal to 

99.98%.  

Thus, for further consideration, allocation 𝑥𝑎 is omitted (because is not 

efficient). Furthermore, we conclude that allocation 𝑥𝑏 is more sensitive than 

allocation 𝑥𝑐 (based on the values of the supremal percentage tolerance). From 

this point of view, allocation 𝑥𝑐 is better than allocation 𝑥𝑏. The consideration 

above includes only sensitivity analysis; in an actual decision-making problem, 

more aspects should be taken into consideration. However, the presented 

analysis can help make a decision in which sensitivity analysis is important. 
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8  Summary  
 

Sensitivity analysis in MOLP problems by means of the tolerance approach was 

considered. New computational methods to obtain the supremal tolerances were 

provided as well. The methods used the decomposition procedure and the bisection 

procedure. Based on the proposed algorithm, MOLPTOL – a new software package 

for obtaining supremal tolerances in MOLP problems – was presented. It can be 

used free of charge on the web page: https://sites.google.com/view/molptol.  

A market model and an application of MOLPTOL to it were presented. The 

application illustrated the possibilities of using MOLPTOL in decision problems in 

which sensitivity analysis is important for the decision maker. Further research and 

improvement of MOLPTOL will consist of: 

−  adding other sensitivity analysis methods, for instance, standard sensitivity 

analysis or the range set approach; 

−  extending the software by introducing fuzzy numbers or interval coefficients; 

−  taking into account other tools beside MSF, for instance, the Gurobi solver; 

−  finding more applications of MOLPTOL. 
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