Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2007 | 3 | 4 | 419-428

Article title

The role of spatial and temporal information in biological motion perception

Selected contents from this journal

Title variants

Languages of publication

Abstracts

EN
Point-light biological motion stimuli provide spa-tio-temporal information about the structure of the human body in motion. Manipulation of the spatial structure of point-light stimuli reduces the ability of human observers to perceive biological motion. A recent study has reported that interference with the spatial structure of point-light walkers also reduces the evoked event-related potentials over the occipitotemporal cortex, but that interference with the temporal structure of the stimuli evoked event-related potentials similar to normal biological motion stimuli. We systematically investigated the influence of spatial and temporal manipulation on 2 common discrimination tasks and compared it with predictions of a neurocomputational model previously proposed. This model first analyzes the spatial structure of the stimulus independently of the temporal information to derive body posture and subsequently analyzes the temporal sequence of body postures to derive movement direction. Similar to the model predictions, the psychophysical results show that human observers need only intact spatial configuration of the stimulus to discriminate the facing direction of a point-light walker. In contrast, movement direction discrimination needs a fully intact spatio-temporal pattern of the stimulus. The activation levels in the model predict the observed event-related potentials for the spatial and temporal manipulations.

Year

Volume

3

Issue

4

Pages

419-428

Physical description

Contributors

author
author
  • Department of Psychology II, University of Muenster, Germany

References

  • Lange, J., Georg, K., & Lappe, M. (2006). Visual perception of biological motion by form: A template-matching analysis.Journal of Vision 6(8), 836-849.[PubMed]
  • Lange, J., & Lappe, M. (2006). A model of biological motion perception from configural form cues.Journal of Neuroscience, 26, 2894-2906.[PubMed]
  • Loula, F., Prasad, S., Harber, K., & Shiffrar, M. (2005). Recognizing people from their movement.Journal of Experimental Psychology. Human Perception and Performormance, 31, 21-20.[PubMed]
  • Mather, G., Radford, K., & West, S. (1992). Low-level visual processing of biological motion.Proceedings of the Royal Society of London B, 249, 149-155.[PubMed]
  • Michels, L., Lappe, M., & Vaina, L. M. (2005). Visual areas involved in the perception of human movement from dynamic form analysis.Neuroreport, 16, 1037-1041.[PubMed]
  • Oram, M. W., & Perrett, D. I. (1996). Integration of form and motion in the anterior superior temporal polysensory area (STPa) of the macaque monkey.Journal of Neurophysiology, 76, 109-129.[PubMed]
  • Pavlova, M., Birbaumer, N., & Sokolov, A. (2006). Attentional modulation of cortical neuromagnetic gamma response to biological movement.Cerebral Cortex, 16, 321-327.[PubMed]
  • Peuskens, H., Vanrie, J., Verfaillie, K., & Orban, G. A., (2005). Specificity of regions processing biological motion.European Journal of Neuroscience, 21, 2864-2875.[PubMed]
  • Beauchamp, M. S., Lee, K. E., Haxby, J. V., & Martin, A. (2002). Parallel visual motion processing streams for manipulable objects and human movements.Neuron, 34, 149-159.[PubMed]
  • Beintema, J. A., Georg, K., & Lappe, M. (2006). Perception of biological motion from limited lifetime stimuli.Perception & Psychophysics, 68, 613-624.[PubMed]
  • Bonda, E., Petrides, M., Ostry, D., & Evans, A. (1996). Specifici involvement of human parietal systems and the amygdala in the perception of biological motion.Journal of Neuroscience, 16, 3737-3744.[PubMed]
  • Casile, A., & Giese, M. A. (2005). Critical features for the recognition of biological motion.Journal of Vision, 5, 348-360.[PubMed]
  • Cutting, J. E. (1978). A program to generate synthetic walkers as dynamic point-light displays.Behavioral Research Methods & Instrumentation, 10, 91-94.
  • Cutting, J. E., & Kozlowski, L. T. (1977). Recognizing friends by their walk: Gait perception without familiarity cues.Bulletin of the Psychonomic Society, 9, 353-356.
  • Dittrich, W. H. (1993). Action categories and the perception of biological motion.Perception, 22, 15-22.[PubMed]
  • Giese, M. A., & Poggio, T. (2003). Neural mechanisms for the recognition of biological movements.Nature Reviews Neuroscience, 4, 179-192.[PubMed]
  • Grossman, E. D., Batelli, L., & Pascual-Leone, A. (2005). Repetitive TMS over posterior STS disrupts perception of biological motion.Vision Research, 45, 2847-2853.[PubMed]
  • Grossman, E. D., & Blake, R. (2002). Brain areas active during visual perception of biological motion.Neuron, 35, 1167-1175.[PubMed]
  • Grossman, E. D., Donnelly, M., Price, R., Pickens, D., Morgan, V., Neighbor, G., & Blake, R. (2000). Brain areas involved in perception of biological motion.Journal of Cognitive Neuroscience, 12, 711-720.[PubMed]
  • Hirai, M., & Hiraki, K. (2006). The relative importance of spatial versus temporal structure in the perception of biological motion: An event-related potential study.Cognition, 99, B15-B29.[PubMed]
  • Hirai, M., Senju, A., Fukushima, H., & Hiraki, K. (2005). Active processing of biological motion perception: An ERP study.Brain Research: Cognitive Brain Research, 23, 387-396.[PubMed]
  • Johansson, G. (1973). Visual perception of biological motion and a model for its analysis.Perception & Psychophysics, 14, 201-211.
  • Jokisch, D., Daum, I., Suchan, B., & Troje, N. F. (2005). Structural encoding and recognition of biological motion: Evidence from event-related potentials and source analysis.Behavioural Brain Research, 157, 195-204.[PubMed]
  • Kozlowski, L. T., & Cutting, J. E. (1977). Recognizing the sex of a walker from a dynamic point-light display.Perception & Psychophysics, 21, 575-580.
  • Pinto, J., & Shiffrar, M. (1999). Subconfigurations of the human form in the perception of biological motion displays.Acta Psychologia, 102, 293-318.[PubMed]
  • Pollick, F. E., Lestou, V., Ryu, J., & Cho, S. (2002). Estimating the efficiency of recognizing gender and affect from biological motion.Vision Research, 42, 2345-2355.[PubMed]
  • Puce, A., Allison, T., Bentin, S., Gore, J. C., & McCarthy, G. (1998). Temporal cortex activation in humans viewing eye and mouth movements.Journal of Neuroscience, 18, 2188-2199.[PubMed]
  • Santi, A., Servos, P., Vatikiotis-Bateson, E., Kuratate, T., & Munhall, K. (2003). Perceiving biological motion: Dissociating visible speech from walking.Journal of Cognitive Neuroscience, 15, 800-809.[PubMed]
  • Thompson, J. C., Clarke, M., Stewart, T., & Puce, A. (2005). Configural processing of biological motion in human superior temporal sulcus.Journal of Neuroscience, 25, 9059-9066.[PubMed]
  • Troje, N. F. (2002). Decomposing biological motion: A framework for analysis and synthesis of human gait patterns.Journal of Vision, 2, 371-387.[PubMed]
  • Troje, N. F., & Westhoff, C. (2006). The inversion effect in biological motion perception: Evidence for a "life detector"?Current Biology, 16, 821-824.[PubMed]
  • Troje, N. F., Westhoff, C., & Lavrov, M. (2005). Person identification from biological motion: Effects of structural and kinematic cues.Perception & Psychophysics, 67, 667-675.[PubMed]
  • Vaina, L. M., Solomon, J., Chowdhury, S., Sinha, P., & Belliveau, J. W. (2001). Functional neuroanatomy of biological motion perception in humans.Proceedings of the National Academy of Sciences of the United States of America, 98, 11656-11661.[PubMed]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.cejsh-article-doi-10-2478-v10053-008-0006-3
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.