Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


2006 | 2 | 2-3 | 221-231

Article title

Neural correlates of rhythmic expectancy

Selected contents from this journal

Title variants

Languages of publication


Temporal expectancy is thought to play a fundamental role in the perception of rhythm. This review summarizes recent studies that investigated rhythmic expectancy by recording neuro-electric activity with high temporal resolution during the presentation of rhythmic patterns. Prior event-related brain potential (ERP) studies have uncovered auditory evoked responses that reflect detection of onsets, offsets, sustains, and abrupt changes in acoustic properties such as frequency, intensity, and spectrum, in addition to indexing higher-order processes such as auditory sensory memory and the violation of expectancy. In our studies of rhythmic expectancy, we measured emitted responses - a type of ERP that occurs when an expected event is omitted from a regular series of stimulus events - in simple rhythms with temporal structures typical of music. Our observations suggest that middle-latency gamma band (20-60 Hz) activity (GBA) plays an essential role in auditory rhythm processing. Evoked (phase-locked) GBA occurs in the presence of physically presented auditory events and reflects the degree of accent. Induced (non-phase-locked) GBA reflects temporally precise expectancies for strongly and weakly accented events in sound patterns. Thus far, these findings support theories of rhythm perception that posit temporal expectancies generated by active neural processes.








Physical description


  • Center for Complex Systems and Brain Sciences, Florida Atlantic University
  • Department of Psychiatry, VA Boston Healthcare System/Harvard Medical School
  • Center for Complex Systems and Brain Sciences, Florida Atlantic University


  • Barlow, J. S. (1969). Some observations on the electrophysiology of timing in the nervous system.Electro-encephalography and Clinical Neurophysiology, 27, 545.
  • Basar-Eroglu C., Basar E., & Schmielau F. (1991). P300 in freely moving cats with intracranial electrodes.International Journal of Neuroscience, 60, 215-226.
  • Bertrand, O. & Tallon-Baudry, C. (2000). Oscillatory gamma activity in humans, a possible role for object representation.International Journal of Psychophysiology, 38, 211-223.
  • Besson, M., Faita, F., Czternasty, C., & Kutas, M. (1997). What's in a pause: event-related potential analysis of temporal disruptions in written and spoken sentences.Biological Psychology, 46, 3-23.
  • Bolton, T. L. (1894). Rhythm.American Journal of Psychology, 6, 145-238.
  • Borgmann, C., Ross, B., Draganova, R., & Pantev, C. (2001). Human auditory middle latency responses: influence of stimulus type and intensity.Hearing Research, 158, 57-64.
  • Brochard, R., Abecasis, D., Potter, D., Ragot, R., & Drake, C. (2003). The tick-tock of our internal clock: direct brain evidence of subjective accents in isochronous sequences.Psychological Science, 14, 362-366.
  • Brunia, C. H. (1988). Movement and stimulus preceding negativity.Biological Psychology, 26, 165-178.
  • Bullock T.H., Hofmann M.H., Nahm F.K., New J.G., & Prechtl J.C. (1990). Event-related potentials in the retina and optic tectum of fish.Journal of Neurophysiology, 54, 903-914.
  • Bullock, T.H., Karamursel, S. & Hofmann, M.H. (1993). Interval-specific event related potentials to omitted stimuli in the electrosensory pathway in elasmobranches: an elementary form of expectation.
  • Journal of Comparative Physiology, 172, 501-510.
  • Bullock, T.H., Karamursel, S., Achimowicz, J.Z., McClune, M.C. & Basar-Eroglu, C. (1994). Dynamic properties of human visual evoked and omitted stimulus potentials.Electroencephalography and Clinical Neurophysiology, 91, 42-53.
  • Connor, W. H. & Lang, P. J. (1969). Cortical slow wave and cardiac rate responses in stimulus orientation and reaction time conditions.Journal of Experimental Psychology, 82, 310-320.
  • Damen, E. J. P. & Brunia, C. H. M. (1985). Slow brain potentials related to movement and visual feedback in a response timing task.Biological Psychology, 20, 195.
  • Drake, C. & Botte, M. (1993). Tempo sensitivity in auditory sequences: evidence for a multiple-look model.Perception and Psychophysics, 54, 277-286.
  • Engström, D. A., Kelso, J. A. S., & Holroyd, T. (1996). Reaction-anticipation transitions in human perception-action patterns.Human Movement Science, 15, 809-822.
  • Erwin, R. J., & Buchwald, J. S. (1986). Midlatency auditory evoked-responses: differential recovery cycle characteristics.Electroencephalography and Clinical Neurophysiology, 64, 417-423.
  • Essens, P. J. & Povel, D. (1985). Metrical and nonmetrical representation of temporal patterns.Perception and Psychophysics, 37, 1-7.
  • Ford, J. M. & Hillyard, S. A. (1981). Event-related potentials (ERPs) to interruptions of steady rhythm.Psychophysiology, 13, 32-39.
  • Friberg, A. S. & Sundberg, J. (1995). Time discrimination in a monotonic, isochronous sequence.Journal of the Acoustical Society of America, 98, 2524-2531.
  • Gaillard, A. W. K. (1978).Slow brain potentials preceding task performance.Amsterdam: Academic Press.
  • Giard, M. H., Lavikainen, J., Reinikainen, K., Perrin, F., Bertrand, O., & Naatanen, R. (1995). Separate representations of stimulus frequency, intensity, and duration in auditory sensory memory: an event-related potential and dipole-model analysis.Journal of Cognitive Neuroscience, 7, 133-143.
  • Grunewald, G. & Grunewald-Zuberbier, E. (1983). Cerebral potentials during voluntary ramp movements in aiming tasks. In A. W. K. Gaillard, W. Ritter (Eds.),Tutorials in ERP research: Endogenous components.(pp. 311-327). Amsterdam: North-Holland.
  • Hannon, E. E., Snyder, J.S., Eerola, T., & Krumhansl, C.L. (2004). The role of melodic and temporal cues in perceiving meter.Journal of Experimental Psychology: Human Perception and Performance, 30, 988-1015.
  • Hughes, H. C., Darcey, T. M., Barkan, H. I., Williamson, P. D., Roberts, D. W., & Aslin C. H. (2001). Responses of human auditory association cortex to the omission of an expected acoustic event.Neuroimage, 13, 1073-1089.
  • Iversen, J. R., Repp, B. H., & Patel, A. D. (2005).Metrical interpretation modulates brain responses to rhythm sequences.Poster presentation at The Neurosciences and Music II: From Perception to Performance Conference in Leipzig, 1060. Annals of the New York Academy of Sciences.
  • Janata, P. (1995). ERP measures assay the degree of expectancy violation of harmonic contexts in music.Journal of Cognitive Neuroscience, 7, 153-164.
  • Janata, P. (2001). Brain electrical activity evoked by mental formation of auditory expectations and images.Brain Topography, 13, 169-93.
  • Jones, M. R. (1976). Time, our lost dimension: toward a new theory of perception, attention, and memory.Psychological Review, 83, 323-335.
  • Jones, M. R., Moynihan, H., MacKenzie, N., & Puente, J. (2002). Temporal aspects of stimulus-driven attending in dynamic arrays.Psychological Science, 13, 313-319.
  • Jongsma, M., Desain, P., & Honing, H. (2004). Rhythmic context influences the auditory evoked potentials of musicians and nonmusicians.Biological Psychology, 66, 129-152.
  • Jongsma, M., Quiroga, R. Q., & van Rijn, C. M. (2004). Rhythmic training decreases latency-jitter of omission evoked potentials (OEPs) in humans.Neuroscience Letters, 355, 189-192.
  • Joutsiniemi, S. L. & Hari, R. (1989). Omissions of auditory-stimuli may activate frontal-cortex.European Journal of Neuroscience, 1, 524-528.
  • Karamursel, S. & Bullock, T.H. (2000). Human auditory fast and slow omitted stimulus potentials and steady-state responses.International Journal of Neuroscience, 100, 1-20.
  • Klorman, R. & Ryan, R. M. (1980). Heart rate, contingent negative variation, and evoked potentials during anticipation of affective stimulation.Psychophysiology, 17, 513-523.
  • Kornhuber, H. H. & Deecke, L. (1965). Hirnpotentia-landerungen bei Willkurbewegungen und passiven Bewegungen des Menschen: Bereitschaftspotential und reafferente Potentiale [Brain potential changes during arbitrary and passive movements in humans: Bereitschaftspotential and reafferent potentials].Pflugers Archiv, 284, 1-17.
  • Large, E. W. (2000). On synchronizing movements to music.Human Movement Science, 19, 527-566.
  • Large, E. W. & Kolen, J. F. (1994). Resonance and the perception of musical meter.Connection Science, 6, 177-208.
  • Large, E. W. & Jones, M. R. (1999). The dynamics of attending, How we track time varying events.Psychological Review, 106, 119-159.
  • Large, E. W., P. Fink, & Kelso, J. A. S. (2002). Tracking simple and complex sequences.Psychological Research, 66, 3-17.
  • Lerdahl, F. & Jackendoff, R. (1983).A generative theory of tonal music.Cambridge: MIT Press.
  • Liberman, M. & Prince, A. (1977). On stress and linguistic rhythm.Linguistic Inquiry, 8, 249-336.
  • London, J. (2002). Cognitive constraints on metric systems: Some observations and hypotheses.Music Perception, 19, 529-550.
  • Makeig, S. (1990). Auditory event related dynamics of the EEG spectrum and effects of exposure to tones.Electroencephalography and Clinical Neurophysiology, 86, 283-293.
  • Mates, J., Radil, T., Muller, U., & Poppel, E. (1994). Temporal integration in sensorimotor synchronization.Journal of Cognitive Neuroscience, 6, 332-340.
  • Naatanen, R. (1990). The role of attention in auditory information processing as revealed by event-related potentials and other brain measures of cognitive function.Behavioral and Brain Sciences, 13, 201-288.
  • Näätänen, R. (1992).Attention and Brain Function.Lawrence Erlbaum Associates: Hillsdale.
  • Naatanen, R., Paavilainen, P., Alho, K., Reinikainen, K., & Sams, M. (1987). The mismatch negativity to intensity changes in an auditory stimulus sequence.Electroencephalography and Clinical Neurophysiology Supplement, 40, 125-131.
  • Naatanen, R., P. Paavilainen, & Reinikainen, K. (1989). Event-related potentials to infrequent decrements in duration of auditory stimuli demonstrate a memory trace in man.Neuroscience Letters, 107, 347-352.
  • Naatanen, R. & Winkler, I. (1999). The concept of auditory stimulus representation in cognitive neuroscience.Psychological Bulletin, 125, 826-59.
  • Palmer, C. & Krumhansl, C. L. (1990). Mental representations for musical meter.Journal of Experimental Psychology: Human Perception and Performance, 16, 728-41.
  • Pantev, C. (1995). Evoked and induced gamma band activity of the human cortex.Brain Topography, 7, 321-330.
  • Pantev, C., Makeig, S., Hoke, M., Galambos, R., Hampson, S., & Gallen, C. (1991). Human auditory evoked gamma-band magnetic fields.Proceedings of the National Academy of Sciences of the United States of America, 88, 8996-9000.
  • Pantev, C., Elbert, T., Makeig, S., Hampson, S., Eulitz, C., & Hoke, M. (1993). Relationship of transient and steady-state auditory evoked fields.Electroencephalography and Clinincal Neurophysiology, 88, 389 - 396.
  • Pantev, C., Bertrand, O., Eulitz, C., Erkindt, C., Hampson, S., Schuierer, G., & Elbert, T. (1995). Specific tonotopic organization of different areas of the human auditory cortex revealed by simultaneous magnetic and electric recordings.Electroencephalography and Clinincal Neurophysiology, 94, 26-40.
  • Pfeuty, M., Ragot, R., & Pouthas, V. (2003). Processes involved in tempo perception: a CNV analysis.Psychophysiology, 40, 69-76.
  • Picton, T. W., Hillyard, S.A., Krausz, H.I., & Galambos, R. (1974). Human auditory evoked potentials. I. Evaluation of components.Electroencephalography and Clinical Neurophysiology, 36, 179-190.
  • Picton, T.W. & Hillyard, S.W. (1988). Endogenous event related potentials. In T.W. Picton (Ed.),Handbook of Electroencephalography and Clinical Neurophysiology(Vol. 3): Human Event Related Potentials (pp. 361-426). Amsterdam: Elsevier.
  • Quene, H. & Port, R. F. (2005). Effects of timing regularity and metrical expectancy on spoken-word perception.Phonetica, 62, 1-13.
  • Raij, T., McEvoy, L., Makela, J.P., & Hari, R. (1997). Human auditory cortex is activated by omissions of auditory stimuli.Brain Research, 745, 134-43.
  • Repp, B. H. (2002). Phase correction in sensorimotor synchronization: nonlinearities in voluntary and involuntary responses to perturbations.Human Movement Science, 21, 1-37.
  • Repp, B.H. (2003). Rate limits in sensorimotor synchronization with auditory and visual sequences: the synchronization threshold and the benefits and costs of interval subdivision.Journal of Motor Behavior35, 355-370.
  • Rogers, R. L., Papanicolaou, A. C., Baumann, S. B., & Eisenberg, H. M. (1992). Late magnetic fields and positive evoked potentials following infrequent and unpredictable omissions of visual stimuli.Electroencephalography and Clinical Neurophysiology, 83, 146-152.
  • Rohrbaugh, J. W. & Gaillard, A. W. K. (1983). Sensory and motor aspects of the contingent negative variation. In A. W. K. Gaillard & W. Ritter (Eds.),Tutorials in ERP research: Endogenous components(pp. 269-310). Amsterdam: North-Holland.
  • Ross, B., Picton, T.W., & Pantev, C. (2002). Temporal integration in the human auditory cortex as represented by the development of the steady-state magnetic field.Hearing Research, 165, 68-84.
  • Ruchkin, D. S. & Sutton, S. (1978). Emitted P300 potentials and temporal uncertainty.Electroencephalography and Clinical Neurophysiology, 45, 268-277.
  • Sams, M., Paavilainen, P., Alho, K., & Naatanen, R. (1985). Auditory frequency discrimination and event-related potentials.Electroencephalography and Clinical Neurophysiology, 62, 437-448.
  • Scheirer, E. D. (1998). Tempo and beat analysis of acoustic musical signals.Journal of the Acoustical Society of America, 103, 588-601.
  • Schroger, E. (1997). On the detection of auditory deviations: a preattentive activation model.Psychophysiology, 34, 245-257.
  • Simons, R. F., Ohman, A., & Lang, P. J. (1979). Anticipation and response set: cortical, cardiac, and electrodemal correlates.Psychophysiology, 16, 222-233.
  • Simson, R., Vaughan, H. G., & Ritter, W. (1976). The scalp topography of potentials associated with missing visual or auditory stimuli.Electroencephalography and Clinical Neurophysiology, 40, 33-42.
  • Snyder, J. S. & Krumhansl, C. L. (2001). Tapping to ragtime: cues to pulse finding.Music Perception, 18, 455-489.
  • Snyder, J. S. & Large, E. W. (2004). Tempo dependence of middle and long latency auditory responses: power and phase modulation of the EEG at multiple time-scales.Clinical Neurophysiology, 115, 1885-1895.
  • Snyder, J. S. & Large, E. W. (2005). Gamma-band activity reflects the metric structure of rhythmic tone sequences.Cognitive Brain Research, 24, 117-126.
  • Takasaka, Y. (1985). Expectancy-related cerebral potentials associated with voluntary time estimation and omitted stimulus.Folia Psychiatrica et Neurologica Japonica, 19, 251-268.
  • Tallon-Baudry, C. & Bertrand, O. (1999). Oscillatory gamma activity in humans and its role in object representation.Trends in Cognitive Sciences, 3, 151-162.
  • Todd, N. P. M., O'Boyle, D. J., & Lee, C. S. (1999). A sensory-motor theory of rhythm perception.Journal of New Music Research, 28, 1-24.
  • Todd, N. P., Lee, C. S., & O'Boyle, D. J. (2002). A sensorimotor theory of temporal tracking and beat induction.Psychological Research, 66, 26-39.
  • Toiviainen, P. & Snyder, J. S. (2003). Tapping to Bach: resonance-based modeling of pulse.Music Perception, 21, 43-80.
  • van Boxtel, G. J. M. & Bocker, K. B. E. (2004). Cortical measures of anticipation.Journal of Psychophysiology, 18, 61-76.
  • van Noorden, L. & Moelants, D. (1999). Resonance in the perception of musical pulse.Journal of New Music Research, 28, 43-66.
  • Walter, W. G., Cooper, R., Alderidge, V. J., McCallum, W. C., & Winter, A. L. (1964). Contingent negative variation: an electric sign of sensori-motor association and expectancy in the human brain.Nature, 203, 380-384.
  • Weerts, T. C. & Lang, P. J. (1973). The effects of eye fixation and stimulus and response location on the contingent negative variation (CNV).Biological Psychology, 1, 1-19.
  • Yabe, H., Tervaniemi, M., Reinikainen, K., & Naatanen, R. (1997). Temporal window of integration revealed by MMN to sound omission.Neuroreport, 8, 1971-1974.
  • Yabe, H., Tervaniemi, M., Sinkkonen, J., Huotilainen, M., Ilmoniemi, R.J., & Naatanen, R. (1998). The temporal window of integration of auditory information in the human brain.Psychophysiology, 35, 615-619.
  • Zanto, T. P., Large, E. W., Fuchs, A., & Kelso, J. A. S. (2005). Gamma-band responses to perturbed auditory sequences: Evidence for synchronization of perceptual processes.Music Perception, 22, 535-552

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.