2008 | 12 | 4 | 217-236
Article title

Predicting Urban Land Prices: A Comparison of Four Approaches

Title variants
Žemės Kainų Miestuose Prognozės: Keturių Metodų Palyginimas
Languages of publication
This paper investigates forecasting accuracy of four different hedonic approaches, when vacant urban land prices are predicted in local markets. The investigated hedonic approaches are: 1) ordinary least squares estimation, 2) robust MM-estimation, 3) structural time series estimation and 4) robust local regression. Post-sample predictive testing indicated that more accurate predictions are obtained if the unorthodox methods of this paper are used instead of the conventional least squares estimation. In particular, the predictive unbiassness can significantly be improved when using the unconventional hedonic methods of the study. The paper also studied the structure of urban land prices. The most important attribute variables in explaining land prices were permitted building volume, house price index, northing and easting. The influence of parcel size variable and different indicator variables on land prices were much weaker.
Nagrinėjama, kokiu tikslumu keturi skirtingi hedonistiniai metodai prognozuoja laisvų žemės plotų kainas vietinėse miestų rinkose. Nagrinėti tokie hedonistiniai metodai: 1) mažiausiųjų kvadratų metodas, 2) daugybinių modelių vertinimas, 3) struktūrinių laiko eilučių vertinimas, 4) lokalinė regresinė analizė.Post-sampleprognostinis testas parodė, kad tikslesnės prognozės gaunamos taikant netradicinius šiame darbe nurodytus metodus, o ne įprastą mažiausiųjų kvadratų metodą. Taikant netradicinius hedonistinius tyrimo metodus, gali gerokai padidėti prognozių nešališkumas. Darbe nagrinėta ir žemės kainų mieste struktūra. Aiškinant žemės kainas iš būdingų kintamųjų svarbiausi buvo leidžiamas pastato dydis, būsto kainų indeksas, sklypo padėtis. Sklypo dydžio kintamasis ir įvairių rodiklių kintamieji žemės kainoms turėjo daug mažesnę įtaką.
Physical description
  • Institute of Real Estate Studies, Department of Surveying, Helsinki University of Technology, Espoo, P.O. Box 1200, FIN-02015 HUT, Finland
  • Anglin, P. M. and Gencay, R. (1996) Semiparametric estimation of a hedonic price function,Journal of Applied Econometrics, 11(6), pp. 633-648.
  • Atack, J. and Margo, R.A. (1998) Location, location, location! The price gradient for vacant urban land: New York, 1835 to 1900,Journal of Real Estate Finance and Economics, 16(2), pp. 151-172.
  • Breiman, L. (2001) Statistical modeling: The two cultures,Statistical Science, 16(3), pp. 199-231.
  • Case, B., Clapp, J., Dubin, R. and Rodriquez, M. (2004) Modelling spatial and temporal house price patterns: A comparison of four models,Journal of Real Estate Finance and Economics, 29(2), pp. 167-191.
  • Clapp, J. M., Rodriquez, M. and Pace, R. K. (2001) Residential land values and the decentralization of jobs,Journal of Real Estate Finance and Economics, 22(1), pp. 43-61.
  • Cleveland, W. S. and Loader, C.R. (1996) Smoothing by local regression: Principles and methods. In: Härdle, W. and Schimek, M. G. (eds.)Statistical Theory and Computational Aspects of Smoothing, Physica-Verlag.
  • Colwell, P.F. (1998) A primer on piecewise parabolic multiple regression analysis via estimations of Chicago CBD land prices,Journal of Real Estate Finance and Economics, 17(1), pp. 87-97.
  • Colwell, P. F. and Munneke, H. J. (1997) The structure of urban land prices,Journal of Urban Economics, 41(3), pp. 321-336.
  • Colwell, P. F. and Munneke, H. J. (1999) Land prices and land assembly in the CBD,Journal of Real Estate Finance and Economics, 18(2), pp. 163-180.
  • Colwell, P. F. and Munneke, H. J. (2003) Estimating a price surface for vacant land in urban area,Land Economics, 79(1), pp. 15-28.
  • Durbin, J. and Koopman, S. J. (2002)Time Series Analysis by State Space Methods.Oxford Statistical Science Series #24, Oxford University Press.
  • Francke, M. K. and Vos, G. A. (2004) The hierarchical trend model for property valuation and local price indices,Journal of Real Estate Finance and Economics, 28(2/3), pp. 179-208.
  • Friedman, J. H., Bentley, J. L. and, Finkel, R. A. (1977) An algorithm for finding best matches in logarithmic expected time,ACM Transactions on Mathematical Software, 3(3), pp. 209-226.
  • Gencay, R. and Yang, X. (1996) A forecast comparison of residential housing prices by parametric versus semiparametric conditional mean estimators,Economic Letters, 52(2), pp. 129-135.
  • Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J. and Stahel, W. A. (1986)Robust Statistics: The Approach Based on Influence Functions, Wiley Series in Probability and Mathematical Statistics.
  • Hannonen, M. (2005) On the recursive estimation of hedonic prices of land,Nordic Journal of Surveying and Real Estate Research, 2(2), pp. 30-56.
  • Harvey, A. C. (1997) Trends, cycles and autoregressions,Economic Journal, 107 (January), pp. 192-201.
  • Harvey, A. C. and Shephard, N. (1993) Structural Time Series Models. In: Maddala, G. S., Rao, C. R. and Vinod, H. D. (eds.)Handbook of Statistics, Vol. 11, Elsevier Science Publishers B. V.
  • Hendry, D.F. (1997) The econometrics of macroeconomic forecasting,Economic Journal, 107 (September), pp. 1330-1357.
  • de Jong, P. (1991) The diffusive Kalman filter,Annals of Statistics, 19(2), pp. 1073-1083.
  • Koopman, S. J., Harvey, A. C., Doornik, J. A. and Shephard, N. (1999)Structural Time Series Analysis, Modelling and Prediction using Stamp, Timberlake Consultants, London.
  • Lin, T. and Evans, A. W. (2000) The relationship between the price of land and size of plot when plots are small,Land Economics, 76(3), pp. 386-394.
  • Loader, C. (1999)Local Regression and Likelihood.Springer Series in Statistics and Computing, Springer-Verlag.
  • Loader, C. (2004)Smoothing: Local Regression Techniques, Handbook of Computational Statistics, (eds.) Gentle, J., Härdle, W. and Mori, Y., Springer-Verlag.
  • McMillen, D. P. (1996) One hundred fifty years of land values in Chicago: A nonparametric approach,Journal of Urban Economics, 40(1), pp. 100-124.
  • McMillen, D. P. (2001) Nonparametric employment subcenter identification,Journal of Urban Economics, 50(3), pp. 448-473.
  • McMillen, D. P. and Thorsnes, P. (2003) The aroma of Tahoma: Time-varying average derivates and the effect of a superfund site on house prices,Journal of Business and Economics Statistics, 21(2), pp. 237-246.
  • Pace, R. K. (1993) Nonparametric methods with applications to hedonic models,Journal of Real Estate Finance and Economics, 7(3), pp. 185-204.
  • Pace, R. K. (1995) Parametric, semiparametric, and nonparametric estimation of characteristic values within mass assessment and hedonic pricing models,Journal of Real Estate Finance and Economics, 11(3), pp. 195-217.
  • Rousseeuw, P. J. and Yohai, V. J. (1984) Robust Regression by Means of S-estimators. In: Franke J., Hardle, W. and Martin D. (eds.) Robust and Nonlinear Time Series,Lecture Notes in Statistics, Springer-Verlag, 26, pp. 256-272.
  • Ruppert, D. and Wand, M. P (1994) Multivariate Locally Weighted Least Squares Regression,Annals of Statistics, 22(3), pp. 1346-1370.
  • Shimizu, C. and Nishimura, G. N. (2007) Pricing structure in Tokyo metropolitan land markets and its structural changes: Pre-bubble, bubble, post-bubble,Journal of Real Estate Finance and Economics, 35(4), pp. 475-496.
  • Schulz, M.A.R. (2003)Valuation of Properties and Economic Models of Real Estate Markets.Dissertation, Berlin: Humboldt University Berlin.
  • Schulz, R. and Werwatz, A. (2004) A state space model for Berlin house prices: Estimation and economic interpretation,Journal of Real Estate Finance and Economics, 28(1), pp. 37-57.
  • Schwann, G. M. (1998) A real estate price index for thin markets,Journal of Real Estate Finance and Economics, 16(3), pp. 269-287.
  • Thorsnes, P. and McMillen, D. P. (1998) Land value and parcel size: A semiparametric analysis,Journal of Real Estate Finance and Economics, 17(3), pp. 233-244.
  • Wallace, N. E. (1996) Hedonic-based price indexes for housing: Theory, estimation and index construction,FRBSF Economic Review, No. 3, pp. 34-48.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.