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SEMI-PARAMETRIC RISK MEASURES 
  
Summary: Parametric methods of risk analyses have long histories starting from the 
first Markowitz proposals associated with moments of the distribution of a random va-
riable, means the distribution of return of the risky investment. Real empirical distribu-
tions have not the characteristics in accordance with the group of elliptical random va-
riable. The risk assessment should be based on measures being based on other 
characteristics, and at the same time be characterized by good properties, agreeable with 
set of axioms formulated with reference to measures of the risk. 
 
Keywords: risk measures, quantiles, expectiles, axioms approach. 
 
 
Introduction 

Researches in the area of the risk analysis are being conducted for the se-
cond mid-fifties of the last century. H. Markowitz as first exploited the measure 
of the statistical description of the distribution of the statistical variable for the 
risk analysis. Estimators of the distribution of a random variable of rates of re-
turn were a next stage of applying the proposed approach. Accepting classical 
way on statistical analysis we should take into account a lot of such assumptions 
like the sample size and the class of distribution. A lot in the extensive literature 
on the subject weak points of the proposed approach portrayed works and exa-
minations, which we will find. There were introduced measures taking into ac-
count the different approach of investors, towards the risk of the measure for the 
description of the type negative approach towards the risk: semi-variance, semi-
standard deviation, semi-averages deviation. The conducted research on the de-
cision making in conditions of risk and in conditions is showing next paths of 
acting unlike classical climbs the uncertainty. Introducing axiomatic properties 
of measures of the risk eliminated applications of many conventional measures 
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of the risk used in finances. In particular measures using the second moment of 
the distribution of the rate of return on account of the lack of the monotonicity, 
proposed through H. Markowitz [1952]. We will move acrobatics of measures of 
the risk leaving from axiomatic properties of measures of the risk. 

 
 

1. Axiomatic risk measures approach 

Answering to the question: how to measure the risk of the portfolio was de-
fine an axioms of coherent measures of the risk. Generally, let R denote and 
monetary risk measure [Artzner et al., 1999]. 
 
Definition 1. A monetary risk measure is a mapping R: Lp(Ω,F, P) → R 
 
Definition 2. A monetary risk measure R is coherent when is:  
1)  monotone: X ≥ Y implies R(X) ≤ R(Y ) (MO) 
2)  subadditive: R(X + Y ) ≤ R(X) + R(Y )  (SA) 
3)  positively homogenous: λ ≥ 0 implies R(λX) = λR(X)  (PH) 
4)  invariant by translation: k  ∈ R implies R(X + k) = R(X) − k (TI) 
 
Definition 3. A monetary risk measure R is can be: 
1)  positive: X ≥ 0 implies R(X) ≤ 0  (PO) 
2)  invariant in law: X ~ Y implies R(X) = R(Y ) (IL) 
3)  convex: ∀λ ∈ [0, 1], R(λX + (1 − λY )) ≤ λR(X) + (1 − λ)R(Y )  (CO) 
 

The interpretation of invariant by translation risk is now that:  

R(X + R(X)) = 0 

and positively homogenous property of risk implies R(0) = 0 (which is also cal-
led the grounded property). We can observe, that if R satisfies property invariant 
by translation and convex then: 

R(μ + λZ) = λR(Z) − μ 

We can find definition of some of this property in literature: invariant by 
translation [Reich, 1984], positively homogenous [Schmidt, 1989], convex [De-
prez, Gerber, 1985]. We now try to look close to quantile risk measures. The 
quantile was a natural risk measure, when X was a loss. We will define risk mea-
sures, that will be large when −X is large.  
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Definition 4. We call Value-at-Risk on the level α ∈ (0, 1) the quantile on the 
level α: 

 ( ) ( ) ααα xXVaRXR ==  or P ( ) αα =≤ xX  

so it is also possible to notice as: 

( ) ( ){ } ( ) ( )αααα QFxXxXVaR x ==≥≤= −1,inf  

Remark: This measures is increasing function in α. We will try to understand the 
unlying axiomatic, for some random variable X. Risk X is said to be VaRα − ac-
ceptable, if VaRα(X) ≤ 0 [Jorion, 2007]. 
 
Lemma. For all α ∈ (0, 1), if g is strictly increasing and left continuous then:  

( )( ) ( )( ) ( )( ) ( )( )XVaRgFgFXgVaR XXg αα αα === −− 11  

and if g is strictly decreasing and right continuous and FX is a bijective then: 

( )( ) ( )( ) ( )( ) ( )( )XVaRgFgFXgVaR XXg αα αα −
−− =−== 1

11 1  

but Value-at-Risk is not sub-additive.  
 
Example 1. We can consider two random variable, two risk as Pareto random 
variable X ~ Par(1, 1) and Y ~ Par(1, 1): 
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so, for all α ∈ (0, 1) we have:  

( ) ( ) ( )YXVaRYVaRXVaR +<+ ααα  

Example 2. We can consider two random variable, two risk as beta random va-
riable X,Y ~ B(92,5%) then:  

VaR0,9(X) + VaR0,9(Y) = 0 + 0 ≤ VaR0,9(X + Y) = 1  

As a conclusion we observe, that the Value-at-risk is generally not a cohe-
rent risk measure. The Value-at Risk is a coherent risk measures for elliptical 
risk. For all X, note that VaR:  

VaRα(X) = inf{R(X) such R is coherent and VaRα(X) ≤ R(X)} 

Now we notice risk measures, which follow the concept of Value-at-Risk, 
especially for non-gaussian risk. 
 
Definition 5. The Tail-Value-at-Risk on the level α ∈ (0, 1), notice as 

( )XTVaRα  is defined as: 

( ) ( )dtXVaRXTVaR t∫
−

= 1
1

1
αα α

 

This measure is the average on Value-at-Risk on the level α ∈ (0, 1). 
 
Remark: There exist a distribution function XF~  (transformation of Hardy- Lit-
tlewood of FX [Hardy, Littlewood, 1930]), such that for all α ∈ (0, 1): 

( ) ( )XTVaRFX αα =−1~
 

If X~ have a distribution function XF~ , then: 

( ) ( )XVaRXTVaR ~
αα =  

The Tail-Value-at-Risk for X is VaR transformation of Hardy- Littlewood 
of X. We can observe and notice than:  

[ ] [ ]XEXTVaR =0  

and because:  
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[ ] [ ] [ ]{ }∫−
−

= α
ξα ξ

α 01
1 dXVaRXEXTVaR  

We can see, that ( )XTVaRα  is increasing function in α: 

[ ] ( ) [ ]XETVaRXTVaR =≥ 00α  

We can comment, that Tail-VaR contains always one loading of security.  
 
Definition 6. The Conditional Tail Expectation on the level α ∈ (0, 1), notice as 

( )XCTEα  is defined as: 

[ ] [ ][ ]XVaRXXEXCTE αα >=  

Next measures CVaR is an average on this risk value, which excess Value-at-
Risk (on the level α ∈ (0, 1)), that mean the average of risk crossings over VaR. 
 
Definition 7. The Conditional-VaR on the level α ∈ (0, 1), notice as 

( )XCVaRα  is defined as: 

[ ] [ ] [ ][ ]
[ ]( ) [ ] [ ]XVaRXCTEXVaRe

XVaRXXVaRXEXCVaR

X ααα

ααα

−==

>−=
 

Definition 8. The Expected shortfall on the level α ∈ (0, 1), notice as ( )XESα  
is defined as: 

[ ] [ ]( )[ ]+−= XVaRXEXES αα  

Now we try to notice some properties for some probability level α ∈ (0, 1) 
[Acerbi, Tasche, 2002]: 
Proposition 1. The nest equivalences is true: 

[ ] [ ] [ ]XESXVaRXTVaR ααα α−
+=

1
1

 

[ ] [ ] [ ]( ) [ ]XES
XVaRF

XVaRXCTE
X

α
α

αα
1

+=  

Proposition 2. Two measures ( )XCTEα  and ( )XTVaRα  coincident for two 
risk with continuous distributions:  
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( )XCTEα  = ( )XTVaRα  

and 

[ ] [ ] [ ]XESXVaRXTVaR ααα α−
+=

1
1

 

[ ] [ ]XTVaRXCTE αα = , ( )1,0∈α  
 
 
2. Comparing Risk based on semi-parametric method in risk analyses 

We can look on properties on quantile function, which is base for risk mea-
sures and base for comparing risk [Trzpiot, 2006]. 
 
Properties 1. A quantile function, as a function of X, is: 
1. positive, X ≥ 0 implies QX(u) ≥ 0, ∀u ∈ [0, 1] 
2. monotonne, X ≥ Y implies QX(u) ≥ QY (u), ∀u ∈ [0, 1] 
3. positively homogenous, λ ≥ 0 implies QλX(u) = λQX(u), ∀u ∈ [0, 1] 
4. invariant by translation, k ∈ R implies QX−k(u) = QX(X) − k, ∀u ∈ [0, 1]  
5. invariant in law, X ~ Y implies QX(u) = QY (u), ∀u ∈ [0, 1] 

 
Quantile function is neither convex nor subadditive, so the quantile function 

as a risk measure might penalize diversification. We can use for comparing risk 
different relation defined in the set of risks.  
 
Properties 2. As first we can use the first stochastic dominance FSD relation 
which is defined as: 
1. E(g(X)) ≤ E(g(Y)) for g no decreasing 
2. For all x∈ R, P(X ≤ x) ≥ P(Y ≤ x) 
3. For all x∈ R, P(X > x) ≤ P(Y > x) 
4. For all x∈ [0, 1], VaRα(X) ≤ VaRα(Y) 
 

Next we can use VaR relation or TVaR relation, which can be view as 
equivalent to second stochastic dominance SSD. 
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Definition 9. Risk Y, X is less dangers then Y, when we base on risk measures 
VaR, if: 

[ ] [ ] ( )1,0, ∈∀≤ ααα YVaRXVaR  

Properties 3. The second is possibility of use the second stochastic dominance 
SSD relation which is equivalent to: 
1. E(g(X)) ≤ E(g(Y)) for g no decreasing and convex 
2. E( (X - t)+) ≤ E((Y - t)+), for all t∈ R 

3. For all x∈ [0, 1], ∫
α

0
VaRp(X)dp ≥ ∫

α

0
VaRp(Y)dp 

4. For all x∈ [0, 1], ∫
∞

α
VaRp(X)dp ≤ ∫

∞

α
VaRp(Y)dp 

5. For all x∈ [0, 1], TVaRα(X) ≤ TVaRα(Y) 
 
 
3. Estimators for quantiles  

We have in the literature few paths to obtain quantile estimators; the usual 
hypothesis in finance is that risk is normal random variable. We try to point out 
a few different estimators for random sample. 
Definition 10. Given a sample {X1, X2…, Xn} the Cornish-Fisher [1937] estima-
tion of the α-quantile is:  

( ) σμα ˆẑˆq̂ nn +=  

where  

∑=
=

n

iX
n

ˆ
11

1μ , ( )∑ −
−

=
=
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( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ]αα
ζ

αα
ζ

α
ζ

α 131
2

113122111 52
36

3
24

1
6

−−−−−− Φ−Φ−Φ−Φ+−Φ+Φ=nẑ  

where 1ζ  is a natural estimator of skewnees and 2ζ  is a natural estimator of the 
excess kurtosis (obtained by moments method). 
 

For nonparametric estimators’ two techniques have been considered to 
smooth estimation quantiles, further implicit or explicit. We can consider a li-
near combination of order statistics. 
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Definition 11. The classical empirical quantile estimate is:  

( ) ( ) [ ]( )npinn XX
n
iFpQ ==⎟

⎠
⎞

⎜
⎝
⎛= −1  

where [.] denote the integer part. 
 

This estimator is simple to obtain, but depends only on one observation. A natu-
ral extension will be to use – at – least two observation, if np is not an integer. 
 
Definition 12. The weighted empirical quantile estimation is then defined as 

( ) ( ) [ ]( ) [ ]( )11 ++−= npnpn XXpQ γγ where [ ]npnp −=γ  

Harrell-Davis [1982] estimator of α-quantile is defined as:  

( ) ( )
( )( ) ( )( )

( ) ( )( )

( )
∑

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
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∫ −
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=
= −

−+−+
n

i
n:i

n
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n
i
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n Xyy

qnpn
npQ

1 1

1111 1
11

1
 

When we want to find a smooth estimator for FX and then find (numerically) 
the inverse. The α-quantile is defined as the solution of ( ) αα =XX qF o . If nF̂  
denotes a continuous estimate of F, then a natural estimate for qX(α) is ( )αXq̂ , such 
that ( ) αα =XX qF o obtained using, e.g. Gauss-Newton algorithm. 
 
 
4. Generalized quantiles as risk measures 

In the statistical and actuarial literature several generalizations of quantiles 
have been considered, by means of the minimization of a suitable asymmetric 
loss function. The new results connected with risk properties was proved in [Bel-
lini et al.,2014]. Authors showed that the only M-quantiles, that are coherent risk 
measures are the expectiles, introduced by W. Newey and J. Powell [1987] as the 
minimizer of an asymmetric quadratic loss function.  
 
Definition 13. The quantiles qα is the minimizer of a piecewise-linear loss function: 

( ) ( )[ ] ( ) ( )[ ]{ }−+

∈
−−+−= xXExXEminargXq

Rx
ααα 1  
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where we use the notation x+:= max{x; 0} and x-:= max{-x; 0}.  
 
Definition 14. The expectiles eα (with α ≥ 1/2 ) of a random variable X may be 
defined as the minimizer of an asymmetric quadratic loss function: 

( ) ( )( ) ( ) ( )( )
⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
−−+⎥

⎦

⎤
⎢
⎣

⎡
−= −+

∈

22
1minarg xXExXEXe

Rx
ααα  

The associated expectile – based risk measure is Rα(X) = ( )Xeα  - E(X). As 
proved in [Jones, 1993], expectiles are quantiles, but not associated with FX. 
 
Example 3. The case where X ~ ε(1) and the case X ~ N(0, 1) can be visualized of 
Fig. 1. 
 

  

Fig. 1. Quantiles, Expected Shortfall and Expectiles, ε(1) and N(0, 1) risks 
 

We can notice next definition, using notation from J. Breckling and R. 
Chambers (1988).  
 
Definition 15. For 1Φ , 2Φ : [0;∞) → [0; ∞) be convex, strictly increasing func-
tions satisfying: 1Φ (0) = 2Φ (0) = 0 and 1Φ (1) = 2Φ (1) = 1, we consider the 
minimization problem: 

( ) ( )x,XinfX
Rx

αα ππ
∈

=  

where 

( ) ( )( )[ ] ( ) ( )( )[ ]−+ −Φ−+−Φ= xXExXEX 21 1 ααπα  

ε(1) 

N(0, 1) 
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and any minimizer 

( ) ( )x,XminargX
Rx

*
αα ππ

∈
∈  

we call a generalized quantile. 
 
Example 4. For 1Φ (x) = 2Φ (x) = x, generalized quantiles reduce to the usual 
quantiles (qα).  
 
Example 5. For 1Φ (x) = 2Φ (x) = x2, generalized quantiles reduce to expectiles. 
Since 1Φ  and 2Φ are differentiable the first order condition is given by:  

( )( )[ ] ( ) ( )( )[ ]−+++ −Φ−=−Φ αα αα xXExXE 21 1  

Any solution of the equality above is called α - expectile of X (eα). 
 

The new results are the properties of a generalized quantile as a risk measu-
res [Bellini et al., 2014]. Given functions 1Φ , 2Φ  as above, a probability space 
(Ω; F; P) and the space L0 of all random variables X on (Ω;F; P), we recall that 
the Orlicz heart MΦ: 

MΦ = ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

>∞<
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Φ∈ 00 aeveryfor,

a
X

E:LX  

Proposition 3. Let 1Φ , 2Φ : [0;∞) → [0; ∞) be convex, strictly increasing func-
tions (satisfying : 1Φ (0) = 2Φ (0) = 0 and 1Φ (1) = 2Φ (1) = 1 ) be convex, 
strictly increasing and satisfy. Let X ∈ MΦ1∩ MΦ2, α∈ (0; 1) and let 

( ) ( )x,XinfX
Rx

αα ππ
∈

= .  

We denote with −*yα  and +*yα  the (lower and upper) generalized quantiles 
of Y. Then the following holds: 
1)  translation equivariance: if Y = X + h with h ∈ R, then [ −*yα , +*yα ] = [ −*xα + h; 

+*xα + h] 
2)  positive homogeneity: if 1Φ (x) = 2Φ (x) = xβ, with β ≥ 1, then Y = λX for      

λ > 0 ) [ −*yα , +*yα ] = [λ −*xα ;λ +*xα ] 

3)  monotonicity: if X FSD Y, then −*xα ≥ −*yα  and +*xα ≥ +*yα  
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4)  constancy: if X = c, P-a.s., then −*xα  = +*xα  = c 

5)  internality: if X ∈ L∞, then [ −*xα ; +*xα ] ∈ [ess inf (X) ; ess sup (X)] 

6) monotonicity in α: if α1  ≤ α2, with α1; α2 ∈ (0; 1), then −− ≤ ** xx 21 αα  and 
++ ≤ ** xx 21 αα . 

 
In the next proposition [Bellini et al., 2014] we have reasonable properties 

in the sense of the axiomatic theory of risk measures. In particular, generalized 
quantiles are positively homogeneous and generalized quantiles are convex. As 
a consequence, we will show, that the only generalized quantiles, that are cohe-
rent risk measures are the expectiles with α ≥ 1/2. 

 
Proposition 4. Let 1Φ , 2Φ : [0;∞) → [0; ∞) be strictly convex and differentiable 
with 1Φ (0) = 2Φ (0) = 0 and 1Φ (1) = 2Φ (1) = 1 and ( ) ( ) 000 21 =Φ′=Φ′ ++ .Let    
α ∈ (0; 1) and:  

( ) ( )( )[ ] ( ) ( )( )[ ]{ }−+

∈
−Φ−+−Φ= xXExXEminargXx

Rx

*
21 1 ααα  

1)  ( )Xx*
α  is positively homogeneous, if and only if 1Φ (x) = 2Φ (x) = xβ, with  

β > 1 
2)  ( )Xx*

α  is convex, if and only if the function ψ : R → R  

( )
⎪⎩

⎪
⎨
⎧

≥Φ

≤−Φ−−
=

0,)(

0),(1
)(

'
1

'
2

tt

tt
t

α

α
ψ  

is convex; it is concave if and only if ψ  is concave 
3)  ( )Xx*

α  is coherent, if and only if 1Φ (x) = 2Φ (x) = x2 and α ≥ 1/2. 
 

From least proposition we have conclusion, that the only generalized quan-
tiles, that are coherent risk measures (in case α ≥ ½). The first order condition 
for expectiles can be written in several equivalent ways: 

( )[ ] ( ) ( )[ ]−+ −−=− αα αα eXEeXE 1  

or also 

[ ] ( )( )[ ]+−
−

−
=− XeXEXEe αα α

α
1

12
, for all α ∈ (0; 1) 
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[Newey, Powell 1987]. We remark, that both equations have a unique solution 
for all X ∈ L1, so expectiles are well defined on L1, although the loss function 
can assume the value +∞. From least propositions we know, that expectiles satis-
fy translation equivariance, positive homogeneity, monotonicity with respect to 
the FSD order and subadditivity (when α ≥ 1/2). In the next proposition we col-
lect some further immediate properties. 

 
Proposition 5. Let X; Y ∈ L1 and let eα(X) be the α-expectile of X. Then: 
(a)  X ≤ Y and P(X < Y ) > 0 imply, that eα(X) < eα(Y ) (strong monotonicity) 
(b)  if α ≤ 1/2, then eα(X + Y ) ≥ eα(X) + eα(Y) 
(c)  eα(X) = -e1-α(-X) 
 
 
Conclusion 

This paper attempts to organize the basic theoretical approaches to the de-
scription and measurement of risk using methods semiparametric. It can be noti-
ce these methods in the extension to the case of multidimensional or mulivalued 
case. Application of the proposed methodology can be in investments as well as 
in insurance or in the description of project risk. 
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SEMI-PARAMETRYCZNE METODY ANALIZY RYZYKA 

Streszczenie: Parametryczne metody analizy ryzyka mają długą historię, począwszy od 
pierwszych propozycji H. Markowitza, związanych z momentami rozkładu zmiennej 
losowej, rozkładu stop zwrotu ryzykownej inwestycji. Rzeczywiste empiryczne rozkłady 
nie mają charakterystyk zgodnych z grupą rozkładów eliptycznych. Ocena ryzyka po-
winna opierać się na miarach bazujących na innych charakterystykach, a jednocześnie 
charakteryzować się dobrymi własnościami, zgodnymi z aksjomatyką sformułowaną 
w odniesieniu do miar ryzyka. 
 
Słowa kluczowe: miary ryzyka, kwantyle, expectiles, aksjomaty miar ryzyka. 
 


