Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


2017 | 339 | 7-16

Article title

CAMEL – ocena ryzyka w estymacji ratingów banków europejskich


Title variants

CAMEL – estimation method European banks’ credit ratings

Languages of publication



Celem artykułu jest analiza istotności wpływu determinant CAMEL w procesie nadawania noty ratingowej bankom. W związku z tym dokonano przeglądu literatury i na tej podstawie postawiono następującą hipotezę badawczą: czynniki CAMEL wpływają w sposób istotny statystycznie na credit rating banków europejskich. Do badania wykorzystano długoterminowe noty ratingowe nadawane bankom europejskim na koniec kwartału przez trzy największe agencje ratingowe. Jako zmienne niezależne zastosowano wskaźniki finansowe oraz zmienne makroekonomiczne zgromadzone z baz Thomson Reuters oraz Banku Światowego. W badaniu zastosowano modele panelowe.
The goal of the article is to analyse the statistically significance of the impact of CAMEL factors on the banks’ credit ratings method. As a result it has been made a literature review and put hypothesis seems as follows: CAMEL factors influence statistically significantly on European banks’ credit ratings. In the research, there have been used the long term issuer credit ratings given European banks at the end of the quarterly by the biggest three credit rating agencies. As independent variables, there have been taken financial indicators and macroeconomic variables collected from the Thomson Reuters and World Bank databases. In the research, there have been proposed panel data models.






Physical description


  • Uniwersytet Warszawski. Wydział Zarządzania. Katedra Systemów Finansowych Gospodarki


  • Bellotti T., Matousek R., Stewart C. (2011a), A Note Comparing Support Vector Machines and Ordered Choice Models’ Predictions of International Banks’ Rating, “Decision Support Systems”, No. 51(3), June.
  • Bellotti T., Matousek R., Stewart C. (2011b), Are Rating Agencies’ Assignments Opaque? Evidence from International Banks, “Expert Systems with Applications”, No. 38(4), April.
  • Bissoondoyal-Bheenick E. (2005), An Analysis of the Determinants of Sovereign Ratings, “Global Finance Journal”, No. 15.
  • Bissoondoyal-Bheenick E., Treepongkaruna S. (2011), An Analysis of the Determinants of Bank Ratings: Comparison across Ratings Agencies, “Australian Journal of Management”, No. 36(3).
  • Chodnicka-Jaworska P. (2015), Credit Rating Determinants for European Countries, “Global Journal of Management and Business”, C, No. 15(9).
  • Chodnicka-Jaworska P. (2016), Banks Credit Ratings – Is the Size of the Credit Rating Agency Important? “Journal of Banking and Finance” (w druku).
  • Dash M., Das A. (2010), A CAMELS Analysis of the Indian Banking Industry, “Global Business Review”, No. 11.
  • Derviz A., Podpiera J. (2004), Predicting Bank CAMELS and S&P Ratings: The Case of the Czech Republic, “Czech National Bank Working Paper Series”, No. 44.
  • Ferri G., Liu L.G., Stiglitz J.E. (1999), Are Credit Ratings Pro-cyclical? Evidence from East Asian Countries, “Economic Notes”, No. 28(3).
  • Gilbert A., Meyer A., Vaughan M. (2002), Could a CAMELS Downgrade Model Improve Off-Site Surveillance? “The Federal Reserve Bank of St. Louis Working Papers”, No. 84.
  • Hassan O.A.G., Barrell R. (2013), Accounting for the Determinants of Banks’ Credit Ratings, “Brunel University of London Economics and Finance Working Paper Series”, No. 13-02.
  • Hau H., Langfield S., Marques-Ibanez D. (2012), Bank Ratings what Determines Their Quality? “EBC Working Paper Series”, No. 1484, October.
  • Liao H., Chen T., Lu C. (2009), Bank Credit Risk and Structural Credit Models: Agency and Information Asymmetry Perspectives, “Journal of Banking and Finance”, No. 33(8).
  • Mekonnen Y., Kedir H. (2015), Soundness of Ethiopian Banks, “International Journal of Finance & Banking Studies”, No. 4.
  • Öğüt H., Doğanay M.M., Ceylan N.B., Aktaş R. (2012), Prediction of Bank Financial Strength Ratings: The Case of Turkey, “Economic Modelling”, No. 29.
  • Ötker-Robe I., Podpiera J. (2010), The Fundamental Determinants of Credit Default Risk for European Large Complex Financial Institutions, “IMF Working Paper”, No. WP/10/153.
  • Persons O. (1999), Using Financial Information to Differentiate Failed vs. Surviving Finance Companies in Thailand: An Implication for Emerging Economies, “Multinational Finance Journal”, No. 3.
  • Poon W.P.H., Firth M., Fung H. (1999), A Multivariate Analysis of the Determinants of Moody’s Bank Financial Strength Ratings, “Journal of International Financial Markets, Institutions and Money”, No. 9(3).
  • Poon W., Lee J., Gup B.E. (2009), Do Solicitations Matter In Bank Credit Ratings? Results from a Study of 72 Countries, “Journal of Money, Credit and Banking”, No. 41.
  • Shen C., Huang Y., Hasan I. (2012), Asymmetric Benchmarking in Bank Credit Rating, “Journal of International Financial Markets, Institutions & Money”, No. 22.
  • Thomson J. (1991), Predicting Bank Failures in the 1980s, “Federal Reserve Bank of St. Louis Economic Review”, No. 1.
  • Türker Kaya Y. (2001), Türk Bankacılık Sektöründe CAMELS Analizi, “MSPD Çalışma Raporları”.
  • Woo S. (2011), Super Disclosure: The Flawed Credit Rating Regulatory Regime, “New York University Law and Economics Working Papers”, No. 1.

Document Type

Publication order reference



YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.