PL EN


2018 | 13 | 149-166
Article title

Application of Multiobjective Dynamic Programming to the Allocation and Reliability Problem

Content
Title variants
Languages of publication
EN
Abstracts
EN
The paper deals with a model of the allocation and reliability problem. This static problem, presented as a multistage decision process, can be solved using multiobjective dynamic programming. The goal of this paper is to formulate the allocation and reliability problem as a multistage decision process, to find the set of all its efficient solutions, to use the weighted sum method for multistage and single-stage criteria, as well as to perform sensitivity analysis.
Year
Volume
13
Pages
149-166
Physical description
Contributors
  • University of Economics in Katowice. Faculty of Informatics and Communication. Department of Operations Research, Katowice, Poland
References
  • Abdelaziz F.B., Colapinto C., La Torre D., Liuzzi D. (2018), A Stochastic Dynamic Multiobjective Model for Sustainable Decision Making, Annals of Operations Research, 2018.
  • Bellman R. (1957), Dynamic Programming, Princeton University Press, Princeton.
  • Bozorgi-Amiri A., Khorsi M. (2016), A Dynamic Multi-objective Location-routing Model for Relief Logistic Planning under Uncertainty on Demand, Travel Time, and Cost Parameters, The International Journal of Advanced Manufacturing Technology, 85(5-8), 1633-1648.
  • Chen S., Fu G. (2005), Combining Fuzzy Iteration Model with Dynamic Programming to Solve Multiobjective Multistage Decision Making Problems, Fuzzy Sets and Systems, 152(3), 499-512.
  • Hämäläinen R.P., Mäntysaari J. (2002), Dynamic Multi-objective Heating Optimization, European Journal of Operational Research, 142(1), 1-15.
  • Klamroth K., Wiecek M.M. (2000), Dynamic Programming Approaches to the Multiple Criteria Knapsack Problem, Naval Research Logistics, 47(1), 57-76.
  • Klötzler R. (1978), Multiobjective Dynamic Programming, Mathematics Operations Horsch Statistics Series Optimization, 9(3), 423-426.
  • Li D., Haimes Y.Y. (1989), Multiobjective Dynamic Programming: The State of the Art, Control Theory and Advanced Technology, 5, 4, 471-483.
  • Mafakheri F., Breton M., Ghoniem A. (2011), Supplier Selection-order Allocation: A Two-stage Multiple Criteria Dynamic Programming Approach, International Journal of Production Economics, 132(1), 52-57.
  • Mine H., Fukushima M. (1979), Decomposition of Multiple Criteria Mathematical Programming Problems by Dynamic Programming, International Journal of System Science, 10, 5, 557-566.
  • Mitten L.G. (1964), Composition Principles for Synthesis of Optimal Multistage Processes, Operations Research, 12, 610-619.
  • Nowak M., Trzaskalik T. (2014), Interactive Approach Application to Stochastic Multiobjective Allocation Problem −a Two-phase Approach, Multiple Criteria Decision Making, 9, 84-100
  • Renaud J., Thibault J., Lanouette R., Kiss L.N, Zaras K., Fonteix C. (2007), Comparison of Two Multicriteria Decision Aid Methods: Net Flow and Rough Set Methods in a High Yield Pulping Process, European Journal of Operational Research, 177, 1418-1432.
  • Trzaskalik T. (2015), MCDM Applications of Near Optimal Solutions in Dynamic Programming, Multiple Criteria Decision Making, 10, 166-184.
  • Trzaskalik T. (1998), Multiobjective Analysis in Dynamic Environment, The Karol Adamiecki University of Economics Press, Katowice.
  • Trzaskalik T. (1993), Weighted Sum Approach to Multiple Criteria Discrete Dynamic Programming, Proceedings of the Administrative Sciences Association of Canada, 14, 2.
  • Trzaskalik T. (1990), Wielokryterialne dyskretne programowanie dynamiczne. Teoria i zastosowania w praktyce gospodarczej, Wydawnictwo Akademii Ekonomicznej im. Karola Adamieckiego, Katowice.
Document Type
Publication order reference
Identifiers
ISSN
2084-1531
YADDA identifier
bwmeta1.element.cejsh-d5ee7b30-58e6-4198-bcbe-926b9d551b22
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.