PL EN


2015 | 237 | 37-49
Article title

Lokalne funkcje głębi w modelowaniu układów ekonomicznych

Content
Title variants
EN
Local Depth Functions in Economic Systems Modelling
Languages of publication
PL
Abstracts
PL
W artykule rozważamy prostą dwuosobową grę kooperacyjną, w której gracze działają w warunkach niepełnej informacji oraz opierając się na szeregu czasowym zawierającym obserwacje odstające. Rozpatrywana gra nawiązuje do idei klasyfikatora indukowanego przez statystyczną funkcję głębi.
EN
In this paper we present a methodological framework for purposes of dynamic cooperative games with locality modelling. Our framework appeals to the recently proposed by Painvaveine and van Bever concept of local depth. We propose a simple dynamic games with two agents and study its properties by means of computer simulations. The paper is a starting point for our research program aiming at creating a statistical apparatus for the cooperative dynamic games with local maximization of individual and group goals.
Year
Volume
237
Pages
37-49
Physical description
Contributors
References
  • Aggerwal Ch.C. (2007), Data Streams - Models and Algorithms, Springer, New York.
  • Anagnostopuoulos Ch., Tasoulis D.K., Adams N.M., Pavlidis N.G., Hand D.J. (2012), Online Linear and Quadratic Discriminant Analysis with Adaptive Forgetting for Streaming Classification, "Statistical Analysis and Data Mining", Vol. 5, s. 139-166.
  • Genton M.G., Lucas A. (2003), Comprehensive Definitions of Breakdown Points for Independent and Dependent Observations, "Journal of the Royal Statistical Society Series B", 65, s. 81-84.
  • Haurie A., Zaccour G. (2005), Dynamic Games: Theory and Applications, Springer, New York.
  • Huber, P. (2011), Data Analysis: What Can Be Learned from the Past 50 Years, Wiley, New York.
  • Kosiorowski D. (2012), Statystyczne funkcje głębi w odpornej analizie ekonomicznej, Wydawnictwo UEK, Kraków.
  • Kosiorowski D. (2014), Lp Depth Binning in Online Data Processing, http://arxiv.org/ pdf/1405.0131v1.pdf.
  • Kosiorowski D., Bocian M., Bujak A. (2014a), A Combination of Localdepth and svm Algorithms in Automatic Identification and Prediction of a Market State, International Scientific Conference of the Faculty of Management 2014, Cracow University of Economics, submitted.
  • Kosiorowski D., Zawadzki Z. (2014b), Selected Issues Related to Online Calculation of Multivariate Robust Measures of Location and Scatter, Proceedings from VIIIth A. Zeliaś Conference, s. 87-97.
  • Kosiorowski D., Zawadzki Z. (2014), DepthProc: An r Package for Robust Exploration of Multidimensional Economic Phenomena, http://arxiv.org/pdf/1408.4542.pdf.
  • Kosiorowski D., Mielczarek D., Rydlewski J., Snarska M. (2014), Sparse Methods for Analysis of Sparse Multivariate Data from Big Economic Databases, "Statistics in Transition New Series", 15(1), s. 111-132.
  • Maronna R.A., Martin R.D., Yohai V.J. (2006), Robust Statistics - Theory and Methods, Wiley, Chichester.
  • Paindavaine D., Bever G. van (2013), From Depth to Local Depth: A Focus on Centrality, "Journal of the American Statistical Association", 105, s. 1105-1119.
  • R Core Team (2013): R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, URL http://www.R-project.org/.
  • Stockis J-P., Franke J., Kamgaing J.T. (2010), On Geometric Ergodicity of CHARME Models, "Journal of the Time Series Analysis", Vol. 31, s. 141-152.
  • Zuo Y. (2004), Robustness of Weighted Lp - Depth and Lp Median, "Allgemaines Statistisches Archiv", 88, s. 215-234.
  • Zuo Y., Serfling R. (2000), General Notions of Statistical Depth Function, "The Annals of Statistics", 28, s. 461-482.
Document Type
Publication order reference
Identifiers
ISSN
2083-8611
YADDA identifier
bwmeta1.element.cejsh-ddbccf62-f0ee-4bac-bb67-29e627e3f05c
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.