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SlMILARITY ANALYSIS OF GROWTH CYCLES

1. Introduction

This paper introduces the definition of similarity measure of two functions. This 
measure is a quantitative characteristic of similarity of functions and it can bc helpful 
in comparison of the sets of qualitative and quantitative data on economic activity. The 
measure includes two special cases: functions dcfined on intervals and functions with 
discrete domains. Similarity measure admits many generalisations, e.g. it can be 
extended on the space of stochastic processes. This fact allows testing several 
hypotheses about mutual properties of time series. These measures are then applied to 
analyse the similarity between the actual dynamics of the aggregate economic activity 
in Poland and its representation by survey data.

It seems important to define the tools for quantifying the similarity of functions and 
the sets of data. These tools, called in this paper similarity measures, enable us to 
compare quantitative time series and survey data and quantify the similarity between 
them. In the suggested comparative method, similarity of economic dynamics is 
defined by the measure of the compatibility of the functions. The considered functions 
are mainly dynamics functions (see Dhrymes, 1971, and Judge et al., 1985), whose 
analytical form we consider as a mathematical model of the dynamics of compared 
processes. There are many possible similarity measures. Some of them seem to be 
useful in theoretical and empirical studies. This paper concentrates on definitions and 
properties of some of them.

2. Similarity measure

A tool for comparing similarity of functions is a similarity relation denoted by y. 

Technically, y  is a binary relation on X  xX , where X  is given functional space. We can 

interpret ( f vgx) y  ( f 2, g2) as “/ ,  is at least as similar to g{ as f 2 is similar to g?.” The 
axioms of similarity relations may be given by the following definition.

Definition 1. A relation y  on X  x X  will be called similarity relation if the following 
conditions hołd:
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(a) X is reflexive, i.e. ( / , / )  X ( / , / )  for all f e X ;

(b) x is transitive:

(/i , g \ ) h ( f 2, g2) A ( /2 , & )b ( / 3>g3) = > (/i> £ i)^ (/*& );

(c) (./;, g ,) h  ( /2, &) => ( £p /i) >: ( / 2> &) and

(f l ,gl  ) ( /2 > &) => C/p £l ) £  (

(d) if /  e  X, then ( / , / )  is the maximal element of X.

Reflexivity is sensible property for similarity. Transitivity is a strong assumption. It 
goes to a concept of rationality. Axiom (c) follows from the symmetric naturę of 
similarity: similarity of the first object to second one is “the same” as the similarity of 
the second object to the first. Axiom (d) is also natural. Any object is morę similar to 
itself than to any other object.

From x we can derive strict similarity y  and indifference ~ relations:

(f \ ,gi  ) > i f 2, g2) <=> (/i ) h  ( /2. g2) but not ( f2, g2) y  (/, ,g , ),

( / i ,g , ) ~ ( /2, g2) <=>(/, , g , ) t  ( f2, g2) and ( /2, g2) y  (/, ,g, )•

Definition 2. Let x be a similarity relation on X. If there exists a function //: X  x X  -» 
such that

( / | . & ) h ( / 2 >&)<=> & ) S / / ( / 2,g-2) V / , , / 2,g , ,g 2 E l ,  (1)

then // will bc called the similarity measure (SM) or, equivalently, X is represented by 
the similarity measure.

Of course, SM is a weak order on X *  X . If x  is represented by SM, then X is complete 

(i.e. for each (/, , g , ) and ( /2 , g2) we have (/, ) X ( /2 , g2) or ( /2 , g2) x  ( / , ,  g , )),

therefore x  is the preference relation on X. In this case SM is the utility function for x . 

It easily follows from Debreu theorem1 that continuity of X is sufficient for the 

existence of the similarity measure for X.

This is the well-known sufficient condition for a preference relation on a set Y to bei
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T heorem  1. I f  y  is coniinuous and complete similarity relation on X  x X, then y  is 
represented by a SMp. Moreover, p  can be chosen such that \p\ < 1 .

In practice it is morę natural to define first the measure p  and then a similarity 
relation according to formula (1).

There are of course many ways to define SM. We now introduce one of them and 
generalise it in several ways. We start from the following example of similarity 
measures of differentiable functions defined on the interwal.

E x a m p le  1. (See Dorosiewicz et al., 1998). Let I = ]a,b[, whcre -oo < a < b < oo, be 
given interwal, C 1 ( I, 9? ) -  the space of all continuously differentiable real-valued 
functions on /. We define the similarity measure in two steps:

(a) the formula of density of measure in a given point t e /,

(b) definition of SM on I.

The density of the similarity measure of /  g e C 1 ( 7, W ) in the point t e ł  is the
cosine of an angle 6(t) between the tangent lines to the graphs of/and  g in the points 
(t, /(/)) and (/, g (/)) respectively (see Fig.l (A)).

F ig u rę  1. (A ) S im ila rity  m e a su re  o f sm o o th  fu n c tio n s . (B) T h e  c o n s tru c tio n  o f  th e  
s im ila rity  m e a su re : th e  d iffe ren ce  b etw een  p ( f g ) (  /,) an d  p ( f  g) ( / 2)

The functions f  g are increasing in the neighbourhood of hence we have p  ( /  g) *

represented by utility function: if a preference relation y  is continuous (i.e. for each y e Y the 
sets { y e Y : y y x} and { x e Y : x y y) are closed), then y  is represented by a utility 
function (i.e. there exists u : Y —> 9? such that x y  y <=> u(x) > u(y) for all x , y e Y).
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(/,) = cos 0V where 0{ e [0, y  ]. In the point t2, where/ dccrcases, g increases, /u ( f  g) 

( t2) = cos 02, where 02> y , so // ( /  g) ( t2) < 0.

Let us consider the following situation showcd in the Fig. 1 (B). If 0X = n -  02, 

then obviously cos 0X = cos 02, but it seems that the function/is morę similar to g at tx 
than in t2 (in the neighbourhood of/, both /  and g increase, in t2 they do not). The 
measure of similarity expressed by the following formula will reflect this:

> 0 and -1 + exp ( a )  elsewhere.
Using the similarity measure in point t we can define the value of the measure on I, 

where -oo <a<b<  oo:

For sufficiently smooth functions ( i .e. with continuous derivatives of the order n 
for some n > 1), one can define the SM by formula (3), with // ( f , g ) ( t )  replaced by:2

with the positivc wcights cop (p = 0 , 1 ) .  These weights may be for example 

harmonie: cop= ( i ; =1 j  ) ' '  .

Let C" (7,S.H) denote the space of all functions mapping a compact interval /  into 
1K with continuous /7- th dcrivative. The simple properties of (4) are collected in the 
following

P ro p o s itio n  1.

(a) / /(,,) is normalised, that is -1 < ju(n) (f, g) < 1;

where /u (f , g ) (/) denotes the value of measure in the point t, 0 (a) which is cqual 1 if a

=  lim inf
<: -> 6 -  0 < ^ 
S —> a +■ 0 s (3)

b

If I = [ a , b ] (-oo  < a < b < oo ), then jLl(f ,g)  =
b -  a Jy“(f ,g){ t )dt

a

Vm ( f , g)(t) = V  a pM ( f tp), g {p)m (4)

2 If n = 1, then of course / / ( is the same as the measure given by (2).
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(b) (/',/) = 1. Conversely, if  jLl(n) (/, g) = 1, then f  = g + c for some constant 
function c;

(c) ^ n\ f g )  = ^(g , f ) \
(d) for any constant c: ju(n) (/', g) = jU(n) (/, g + c) ;

(e) / /" ’ is continuous in the norm topology o f C" ( I f H) definedby the norm

11/11= ^ = osup,6/| / <p)(0|.

£ x am p le  2. Now let us consider the case with discrete domain

D= {1, m}, (5)

where m > oo, and two rcal functions /  g defined on D. In this case, the measure of 
similarity of / and g is the average value of measures in the points of D:

li(f.g) -

u — 1
liur inf £  M/> <?)(*) */ -  cc.

m~-1
7^1 E  i Ą f f f )  i f  m <  oc,

where for t g D:

/Ąf,q)(t) - ______|1 +A/(*)A<y(Q|
V(i + (A/(t))2) (i + (Afltf))2)

i) (Af(t)Ag(t.))

(6)

(7)

and for <f> = f ,  g A (f) defines the (first-order) diffcrcncc of <f>:
A</> ( / )  = f t t + 1) -  A < /> ( t) .

The cquations (6) and (7) are very similar to (2) and (3). The difference A<f> 
corresponds in a natural way with the derivativc ( f . The formula cquivalcnt to (4) can 
be obtained in the natural way: high order derivatives should be replaced by 
appropriate high-order differences.

The constmction from the last example can be generalised in scvcral ways. Namely, 
let D be a nonempty set, fM -  a given cr-algebra of subsets of O, and v : fM. —» II? a 
nonnegative and a-finite measure such that v (D) > 0 and the map: t m> //
(/, g ) (0  is v-measurablc3. The measure of similarity of functions / ,  g : D —> S.H is 
defined by:

3 For example, p may be given by (4) for some n and v may be the Lebesgue measure on W
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ilo{ f  •. u) = inf lim m i - 7r -a — .
(D„) n-+oo

1
(8)

UL, 0*

where inf covers all partitions ( Dn ) of D such that v ( Dn ) < 00. The cr-finitencss of v
implies, that this family is nonempty. If vis finite (i.e. v (D) < 00) and sequentially 
continuous then (8 ) can be reduced to

iLn ( f  ■ 9) iĄD)
}j(J,g)(t)diĄt) (9)

i)

For example, if D =]o, b[, f ,  g are smooth, and ydenotes the Lebesgue measure 
on D, then we obtain (3). If D has the fonu (5) and vis the computing measure4 on D, 
then we obtain fonuula (6 ).

3. S im ila rity  o f stochastic processes

The ideas mcntioncd above can be applied to construct the measure of similarity of 
stochastic processes. The case with continuous-time stochastic processes is much morę 
complex. Formula (2) is not useful in many important cases because it requires the 
differentiability of the compared processes. Unfortunately, many of stochastic 
processes are not differentiable in any way5. For example, almost all (with probability 
one) trajectories of separable Wiener process are continuous but not differentiable. 
Moreover, the Wiener process is not differentiable in mean-square sense (see e.g. 
Gihman, 1979, and Karatzas, 1991). This implies the necessity of changes in the 
definition of the similarity measure.

For discrete-time stochastic processes the measure of similarity can be defined 
analogously to (6 ) -  (7). Morę precisely, let £ =  (<%,),eT and 7 = (/7,),er (T = {1, ...,
m}) be stochastic processes. It is easy to see that for any t e T:

t9(A £tArjt )

is random yariable. The value of similarity measure of /; can be obtained from the 
formula analogous to (6 ):
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( 11)
and

71— rO O  J l  Z '
t < n

rn — oc. (12)

It follows from the Lebesgue majority theorem, that At (£, ?j) has finite all moments 
(esp. mean), so // (£, rf) is well-defmed.

Example 3. Let us compute the values of similarity measure of selected discrete- time 
stochastic processes: independent white noises ( £t), ( St) and random walks

Because of the complexity of formula (11), the integrals may be computed only using 
numerical procedures like Monte Carlo (MC) simulations:6

(A) Similarity /u of two independent Gaussian white noises;
(B) Similarity of independent random walks, see Fig. 2 (B).

The results are shown in Fig. 2.
Figurę 2. (A) Similarity of two independent Gaussian white noises with standard 
deviation a  (B) Similarity of two independent Gaussian random walks. 
Dependence of the similarity on standard deviation of the differences: results of 
MC simulations.

statistics verifying the hypothesis about (non-) stationarity of process generating given

6 The computations were done with Mathematica v.3 system.

0.2 i a

O t '. I

\

\

;:
:f .... 4 6 8

(A) («)
Random variables /l (£ ,;;) = Z'” , At (i%,i]) can be used to construct the
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time series. These statistics may be used together with well-known stationarity tests, 
i.e. Dickey-Fullcr tests (Dickey et al., 1979, 1981), Phillips tests (Phillips et al., 1987, 
1988), etc. To show this idea, let us consider independent random walks processes 
(13), where t = 1, ..., m, ( £t), ( 5t) are independent Gaussian white noises with mean

zero and standard dcviations cr, and o 2 rcspectively.

Let B be the time-lag operator: (Br])t = 77, ,  and let [x] denote the integer part of
number x. The Lebesguc majority theorem and Lindenberg-Levy theorem imply that 
the random variables

A, = A
0-2 (14)

have finite all the moments and their distributions are asymptotically (w —» 00) normal. 
This observation gives the asymptotical tests to verify the hypothesis (13).

If the sample is smali, the random variables (14) are not in generał Gaussian. In this 
case the sample standard deviation

SrniO

may be significantly different from cr,. The Monte Carlo simulations enable to
estimate the ąuantiles of statistics:

A
(15)

The results depend on the sample size. They are presented in Table 1.

Table 1. Estimated ąuantiles of random variable

a a-quantiles of (15) for sample size m:

10 20 50 100 150

0.05 0.69 0.77 0.86 0.91 0.93

0.1 0.72 0.80 0.88 0.92 0.94

0.2 0.75 0.82 0.90 0.94 0.96

0.3 0.78 0.85 0.91 0.95 0.96

0.4 0.80 0.86 0.93 0.96 0.97

0.5 0.82 0.88 0.94 0.96 0.98
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Formula (15) provides a natural unit-root test for verifying the stationarity of time 
series. The nuli hypothesis H0 and the altemative one Hu are the following:

H0: data are drawn by random walk process (13);

Ha : data are generated by stationary AR(  1) process

The critical set contains smali values of statistics: H0 is rejected if the value of (15) 
is smaller than the appropriate quantile from Table 1. The graph of estimated power 
function for sample size m = 10 and m = 50 is prescnted on Fig. 3. The power function 
of this test obviously depends on the sample size m. For smali m < 30 it is comparable 
with power function of Dickey-Fuller (DF) test (see Fig. 4). For larger samples, m > 
30, DF test is uniformly stronger than (15), but the difference of power is not very 
significantly large.

It is worth to notice that the random variables (14) may also be applied to vcrify 
higher-order integration and cointegration (see Engle, 1987, and Hamilton, 1994) of 
time series. In this case the differcnccs A£ , A// in formula 10) should be rcplaced by 
d-order ones Acl £, Ad rj.

Figurę 3. The power function M  of (15). Probability level a = 0.05. Saniple size 
m = 10 (A), and m  = 50 (B).

Figurę 4. Estimated difference M  -  M DF of power functions M, M DF of (15) and 
Dickey-Fuller test based on /-statistics and O L S  regression. Sample size m  = 20.

£ =  c { + a ę ,_ x+ £t , / =  1,... ,m.

M  -  Al of

a
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4. Similarity of generał indicators of business activity based on qualitative 
and quantitative data

In this section we cvaluate the similarity of two sets of indicators of generał business 
activity for Poland. The first set consists of the indicators Z H G 1, ... , ZHG4 and 
Z G G 1,...,Z G G 4, based on qualitative data. These indicators are a weightcd average 
of indices reflccting business tendency (sales, production etc.) in major sectors of 
cconomy.7 The second set consists of statistical indicators of the aggregate output, 
including GDP, industrial production indcx IP, and GCI (generał coincident indicator) 
-  a weighted average of indices reflecting output or sales in major sectors of economy 
weightcd by thcir yearly shares in GDP.8 The latter are considercd to be reference 
indexes to check the adcąuacy and forecasting properties of the qualitative indicators.

The analysis was madę on time series calculated by Z. Matkowski for the period 
1994-2001 at monthly inteiwals.

The values of similarity between time series (and some of thcir components) are 
shown in Table 2. The results of an extended analysis, including leads or lags, are 
shown in Table 3.

Table 2. Average values of similarity between the selected indexes
Index G D P l 1 P I G D  P t  m e d G D P I j c I P I _ m c d I P l j c

Z H G  1 0.22 0.07 0 .3 9 0 .3 6 0 .3 0 0 .31
Z H G  2 0.23 0.09 0.36 0.33 0.20 0.28
Z H G 3 0.23 0.11 0.36 0.33 0.23 0.28
Z H G A 0 .2 3 0 .11 0.32 0.31 0.27 0.23
Z G G 1 0.14 0.12 0.28 0.26 0.14 0.13
Z G G  2 0.14 0.10 0.27 0.24 0.18 0.18
Z G G 3 0.15 0.12 0.28 0.27 0.24 0.19
Z G G A 0 .2 8 0 .1 3 0 .3 4 0 .3 3 0 .31 0 .2 5

Z H G  1 m e d 0.26 0.17 0.53 0.35
Z H G  1 t c 0.32 0.15 0.58 0.48
Z H G 2 m e d 0.27 0.17 0.57 0.42
Z H G 2 t c 0.40 0.20 0.64 0.55
Z H G l m e d 0.32 0.20 0.57 0.40
Z H G 3 t c 0.36 0.18 0.60 0.54
Z H G A m e d 0 .3 7 0.17 0 .5 9 0 .5 2
Z H G A t c 0 .4 2 0.19 0 .61 0 .6 4
Z G G  1 m e d 0.30 0.13 0.45 0.28
ZGG 1 t c 0.42 0.17 0.56 0.53
ZGG 2_ m e d 0.30 0.14 0.43 0.30

7 These indicators, developed by Z. Matkowski, differ in formulas and weights. lndexes 
Z H G  1, ... , ZHGA  base on data from the Research Institute of Economic Developmenl, Warsaw 
School of Economics, while indexes Z G G \ ,  ... , ZGG4 use survey data from the Central 
Statistical Office. (See Matkowski, 2000, 2002).

8 For simplicity, the GCI reference index has been dropped in our computations.



Similarity Analysis of Growth Cycles 309

ZGG2 tc 0.37 0.15 0.47 0.49
ZGG3 med 0.43 0.18 0.54 0.46
ZGG3 tc 0.44 0.16 0.52 0.48
ZGGA med 0 .4 2 0.21 0 .5 8 0 .5 0
ZGGA_ tc 0 .4 8 0.21 0 .6 4 0 .6 3

med — seasonally adjusted index, smoothed by MCD-average, tc — trend + cycle (9 or 13 month 
moving average), suffix /  denotes constant base index (1995 = 100).

Looking at these tables, we can make the following observations:
• The dynamics o i Z H G \ ,  .... ZGG A is significantly similar to the reference index, 

especially GDP. The values of similarity measure increasingly rise if the time series 
are smoothed. These indcxcs seem to be good to asses the current economic trend.

• The best fit to the actual development of economy (actual changes of reference 
index) is given by the indexes ZHG  1, ZHGA and ZGG  1, ZGGA.  Similarity 
analysis does not allow to choose one of them as the best indicator. Perhaps it can 
be done together with statistical and other methods (see Matkowski, 2002).

• The most similar dynamics against the reference indexes, either synchronically or 
with some lead (<12 months), is shown by ZHG  1, Z HG 3, ZHGA, ZGG3  and 
ZGGA.  These indexes seem to be good leading indicators. They also can be the 
basis to find another formula for good leading indicators.

Table 3. Maximum similarity between reference indexes (GDP or IP) 
and the current and delayed survey based indicators

Index GDP1 GDPG GOPR 1P1 IPG IPR
ZHG 1 0.33 (-10) 0.33 (-11) 0.25 (0) 0.21 (-10) 0.12 (-12) 0.12 (-6)
ZHG 2 0.43 (-10) 0.27 (-1) 0.18(0) 0.23 (-10) 0.16 (-7) 0.14 (-10)
ZHG3 0 .4 9  (-1 0 ) 0 .4 0  (-1 2 ) 0.20 (0) 0.26 (-10) 0.22 (-7) 0.16 (-1)
ZHGA 0.41 (-10) 0.28 (-1) 0.24 (-10) 0 .2 5  (-1 0 ) 0.20 (-3) 0.15 (-11)
ZGG 1 0.43 (-9) 0.29 (-6) 0.32 (-10) 0.21 (-5) 0.23 (-3) 0.18 (-12)
ZGG 2 0.44 (-9) 0.33 (-6) 0.28 (-10) 0.23 (-9) 0.25 (-7) 0.17 (-10)
ZGG3 0 .4 8  (-8 ) 0 .4 0  (-7 ) 0 .3 5  (-1 1 ) 0.25 (-5) 0.23 (-6) 0.17(0)
ZGGA 0 .4 7  (-1 0 ) 0.37 (-1) 0.31 (-12) 0 .2 9  (-1 0 ) 0 .2 6  (-6 ) 0 .2 2  (-1 1 )

The suffix I means constant base index (1995 = 100), G -  growth ratę against the same month 
in the preceding year, R -  growth ratę against the preceding month. The element in /-th row and
y-th column is max{//( B T ind„ ref]) : z = 0, ... , 12}. The number of leads is given in the 
parenthesis.

The most adeąuate formula of the generał indicator of business activity can be 
obtained by comparing similarity between the actual reference index (GDP, IP, or 
another one) and actual or delayed values of the survey-based indicators. The similarity 
analysis provides a natural criterion for a good indicator: its dynamics should be 
similar to the dynamics of reference index. Moreover, its changes should lead the



changes of reference index. Formally, the optimal indicator ind* is a solution of the 
following optimisation problem:

Maximise fj{ ref, B T ind ), (16)

subject to: ind bclongs to the set of admissible indicators and 0 < r < r* where ref 
denotes the reference index, B is the lag-operator, r* is an arbitrary chosen maximum 
number of lags (time difference) between ind and ref It is worth to notice that this 
methodology does not reąuire stationarity of time series.

It follows from Table 3 that the indexes ZHG  1,..., ZHGA, ZGG  1,..., ZGGA 
(especially Z H G 3, ZHGA and ZGG3, ZGG4) have similar dynamics to GDP and 
IP.

But, slightly better results could be reached by taking an average of different 
indicator variants. Solving the problem (16) with r* = 12, one can obtain the following 
results:

• The indicator

ind\ =0.07 ZHG3  +0.16 ZHGA +0.11 ZGG 1 +0.14ZGG2 
+ 0.20ZGG3 +0.31 ZGGA,

// (B10ind 1, GDP)  = 0.32 (17)

is the most similar to GDP among all linear combinations of ZHG  1 -  ZGGA.  The 
maximum of similarity is attained with r  = 10. This means that (17) is a quite good 
leading indicator.

• The indicator

Indl = 0.21 ZHG  1 + 0.25 ZHG2  + 0.27 ZHG3  + 0.26 ZHGA,

H (Bl 1 ind2 , GDP)  =  0.31 (18)

is the most similar to GDP among all linear combinations of indexes ZHG  1 -  
ZHGA.  The maximum of similarity is attained with r = 11.

• The indicator

Indl = 0.34 ZHG2  +0.50 ZHG3 +0.16 ZHGA,
ju(B'°ind3,IP)  =0.17 (19)

is the most similar to IP among all linear combinations of indexes ZHG 1 -ZHGA.  
The maximuin of similarity is attained with r = 10.
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Similarity measures may be useful tools in analysing data, particularly in comparing 
dynamie structure and building economctric models.

The definition of similarity measures can be extended on the space of stochastic 
processes on given probabilistic space. Depending upon the definition of the similarity 
measure, scveral properties of stochastic processes may be invcstigatcd and a number 
of hypothesis conceming data may be verified.

The definition of the similarity measure secms to be quite flcxible, so it may lead to 
a large number of tests of probabilistic properties of data. It secms that in generał the 
values of the power function of the test (15) are not vcry less than the standard Dickey- 
Fuller test. It may be vcry interesting to compare the power functions of these tests. It 
is very important to construct a number of sufficiently strong independent tests to 
examine the stochastic structure of data. Perhaps it is possible to find a statistic based 
on the similarity measure //, with a power function greater than the mentioned tests of 
stationarity.

The similarity measures seem also to be a useful tool to analyse composite 
indicators of economic activity. The analysis of similarity, together with other 
methods, can be applied to choosc the most appropriate formulas for leading indicators 
to assess current economic situation and to predict GDP growth rates.
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