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APPLICATION OF FUNCTIONAL  
BASED ON SPATIAL QUANTILES  

 
Summary: Presented approach describe some functional which is robust measures based on 
quantiles. We consider the multivariate context and utilize the spatial quantiles. We notice 
an extension of univariate quantiles and we presented nonparametric measures of multivari-
ate location, spread, skewness and kurtosis. In modeling extreme risk important properties 
are based on heavy-tailed distribution. We present tailweight and peakedness measures. To 
aid better understanding of the spatial quantiles as a foundation for nonparametric multivari-
ate inference and analysis, we also provide some basic properties. 
 
Keywords: multivariate distributions; spatial quantiles, descriptive measures. 
 
 
Introduction 
 

When we make some research using some probability distributions we need 
robust descriptive measures. Presented approach can be useful when the distribu-
tions are unspecified, as in the case of exploratory and nonparametric inference. 
In the univariate case, many notions of descriptive measures are quantile-based, 
exploiting the natural order in R. For extension to the multivariate case, one 
must decide which approach we can use, select a particular version of multivari-
ate quantiles. We use the spatial quantiles, which were introduced by Chaudhuri 
[1996] and Koltchinskii [1997] as a certain form of generalization of the uni-
variate case based on the L1 norm.  

The spatial quantiles have induced and the basic descriptive measures is no-
tice in terms of the spatial quantiles. Appling the spatial quantiles as a basis we 
notice measures of location, spread, skewness and kurtosis. Location in this 
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sense already has a representative measure: spatial median1. Almost as important 
as location is spread, for which spatial versions are already noted in Chaudhury 
[1996]. Next most important are skewness and kurtosis, which serve, for exam-
ple, to characterize the way in which a distribution deviates from normality. 
Building on our treatment of spatial location and spread, we notice spatial meas-
ures of skewness and kurtosis. 

The spatial location and volume functional are utilized in formulating 
measures of asymmetry and a spatial kurtosis functional. We present on the kur-
tosis as a measure of the degree of shift of probability mass toward the center 
and/or the tails. Additionally we make some note on tailweight and peakedness 
as special tail distribution measure.  
 
 
1. The spatial quantiles 
 

For univariate Z with E|Z| < 1, and for 0 < p < 1, the L1-based definition of 
univariate quantiles characterizes the pth quantile as any value θ minimizing 

[Ferguson, 1967]: 
 

                                           E{|Z − θ| + (2p − 1)(Z − θ)}.                                    (1) 
 

As an extension to Rd, “spatial” or “geometric” quantiles were introduced 
by Chaudhuri [1996] as follows. We can rewrite the previous formula as: 
 

                                               E{|Z − θ| + u(Z − θ)},                                           (2) 
 

where u = 2p − 1, thus re-indexing the univariate pth quantiles for p ∈ (0, 1) by u in 
the open interval (−1, 1). Then d-dimensional quantiles are formulated by ex-
tending this index set to the open unit ball Bd−1(0) and minimizing a generalized 
form of (2), 
 

                                           E{Φ(u, X − θ) − Φ(u, X)},                                        (3) 
 

where X and θ are Rd-valued and Φ(u, t) = tut ,+  with ⋅  the usual Euclidean 

norm and ⋅⋅,  the usual Euclidean inner product. (Subtraction of Φ(u, X) in (3) 
eliminates the need of a moment assumption.) This yields, corresponding to the 
underlying distribution function F for X on Rd, and for u ∈ Bd−1(0), a uth quantile 
QF(u), having both direction and magnitude. In particular, the well-known spa-
tial median is given by QF (0), which we shall also denote by MF . 

                                                 
1  See Small [1990] for an overview of multidimensional medians. 
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It can be checked that, for each u ∈ Bd−1(0), the quantile QF(u) may be rep-
resented as the solution2 x of: 
 

                                             −E{(X − x)/ xX − } = u.                                      (4) 
 

So to each point x in Rd a spatial quantile have some interpretation: spatial 
quantile QF (ux) indexed by the average unit vector ux pointing to x from a ran-
dom point having distribution F. Since ux is uniquely determined by (4) and sat-
isfies x = QF (ux), we interpret ux as the inverse at x of the spatial quantile func-
tion QF and denote it by )(1 xQF

− . When the solution x of (4) is not unique, 
multiple points x can have a common value of )(1 xQF

− . 
Additionally we can say that “central” and “extreme” quantiles QF(u) corre-

spond to u  being close to 0 and 1, respectively. Thus we may think of the 

quantiles QF(u) as indexed by a directional “outlyingness” parameter u whose 
magnitude measures outlyingness quantitatively, and thus we may measure the 
outlyingness of any point x quantitatively by the corresponding magnitude 

)(1 xQu Fx
−= . As consequence of (4) is that QF(u) is obtained by inverting the map:  

 

                                            t → −E{(X − t)/ tX −  },                                       (5) 
 

from which it is seen that spatial quantiles are a special case of the  
“M-quantiles” introduced by Breckling and Chambers [1988].  
 

The function )(1 xQF
−  = −E{(X − x)/ xX − } is called the “spatial rank 

function” [Möttönen, Oja, 1995], as it generalizes the univariate centered rank 
function, 2F(x) − 1, and similarly indicates the average direction and distance of 
an observation from the median. The spatial quantile function and the spatial 
rank function are simply inverses of each other.  

In the setting of the multivariate location model F(x − θ), the sample ana-
logue rank function evaluated at a point θ0 provides a “spatial sign test” statistic 
for the hypothesis H0: θ = θ0.  

Further, (4) yields the following useful property of the spatial quantile func-
tion. For the case that F is centrally symmetric about MF , that is, X − MF and  
MF − X are identically distributed, the corresponding median-centered spatial 
quantile function QF is skew-symmetric: 
   

                                QF(−u) − MF = −(QF(u) − MF ), u ∈ Bd−1(0).                   (6) 
 

                                                 
2  The solution QF(u) to (4) always exists for any u, and it is unique if d ≥ 2 and F is not supported 

on a straight line Chaudhuri [1996]. 
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When the distribution F is transformed by x → Ax + b, with A proportional 
to an orthogonal matrix and b an arbitrary vector, then the same mapping applied 
to the original quantile function at u yields the quantile function of the trans-
formed distribution, subject to the reindexing u → u′  = ( Auu / )Au then: 
 

                         QAX+b(( Auu / )Au) = AQX(u) + b, u ∈ Bd−1(0).                   (7) 
 

For convenience we denote QG also by QY for Y having distribution G.  
In particular, the spatial median of the transformed distribution is given by the 
same mapping applied to the spatial median of the original distribution: MAX+b = 
= AMX + b. Note that the quantity u  is preserved under the reindexing, that is, 

uu =′ , having the interpretation that the outlyingness measure associated 

with a given point x is invariant under the given linear transformation, that is, 
)()( 11 xQxQ XbAX

−−
+ =  for each x ∈ Rd. So the spatial quantiles are equivariant 

with respect to shift, orthogonal, and homogeneous scale transformations. 
In terms of a data set (a cloud) in Rd, the sample spatial quantile function 

changes as was prescribed by (7) if the cloud of observations becomes trans-
lated, or homogeneously rescaled, or rotated about the origin, or reflected about 
a (d − 1)-dimensional hyperplane through the origin. For the singular value de-
composition of matrices, equivariance with respect to an arbitrary affine trans-
formation x →  Ax + b fails only in the case that the action by A includes hetero-
geneous scale transformations of the coordinate variables. 

Computation of the sample spatial quantile function for a data set X1, . . ., Xn via: 

                                               
∑

=

=
−
−
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n
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n 1
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(8)

 
is straightforward [see Chaudhuri, 1996], whereas, for example, many of the 
depth-based notions of multivariate quantiles are computationally intensive. We 
note that the left-hand side of (8) is the sample version of the centered rank func-
tion discussed above. Likewise, 
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(9) 

gives the sample spatial signed-rank function [Möttönen and Oja, 1995]. 
We note a robustness property of Qn(u): its value remains unchanged if the 

points Xi are moved outward along the rays joining them with Qn(u). Moreover, 
it has favorable breakdown point (50% for the median) and bounded influence 
function [Koltchinskii, 1997]. 
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The formulation of spatial quantiles as a solution of an L1 optimization 
problem is quite different from that of multivariate quantiles defined in terms  
of statistical depth functions as boundary points of depth-based central regions 
of specified probability, in Serfling [2002] it is seen that the spatial quantiles in-
deed possess a useful depth-based representation, in terms of a new “spatial 
depth function” which is quite natural: D(x, F) = 1 − )(1 xQF

− . 

Sample generalized spatial quantiles are consistent and asymptotically 
Gaussian with an intractable dispersion parameter. The generalized bootstrap can 
be used for inference and obtaining all statistical properties of these quantiles. 
Projection quantiles have one to one relationship like univariate quantiles. Pro-
jection quantiles based confidence sets have exact coverage. 
 

 
 

Fig. 1. Example scatter plot 
 

Source: Simultaneous quantiles of several variables. S. Chatterjee, School of Statistics, University of Minnesota. 
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Fig. 2. Example scatter plot 
 

Source: Simultaneous quantiles of several variables. S. Chatterjee, School of Statistics, University of Minnesota. 
 
 
2. Spatial location measures 
 

The traditional “spatial” location measure is the well-known spatial median 
given by QF(0) = MF. Additional forms of location measure are generated by 
quantile-based “L-functionals” which in the present context are given by (vector-
valued) weighted averages of the spatial quantile function, ∫

− )0(1

)(
d

duuQF
B

μ R, 

with respect to signed measures μ(du) on the index set Bd−1(0).  
 

Definition 1. Particular class of location measures, is defined by:  
 

∫
−

=
)0(1

)()()(
d
r

dumuQrl FF
S

, 0 ≤ r < 1, 

where )0(1−d
rS  is the sphere (the surface of the ball) of radius r centered at the 

origin 0, and m(du) is the uniform measure on this sphere.  
 

Note that lF(0) is just MF. Moreover, in the case of centrally symmetric F, 
lF(r) ≡  MF. Considered as a function of r, we call lF(·) the location functional 
corresponding to F through its associated spatial quantile function. It is easily 
seen that lF (r) is equivariant with respect to shift, orthogonal and homogeneous 
scale transformations. 
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Various applications are supported by the spatial location functional. For 
example, a spatial version of multivariate trimmed mean is given by the integral 
of QF(u) with respect to the uniform measure on a subset of Bd−1(0) of form  

{u : u  ≤ β}. In terms of the location functional, this is just ∫
β

0

)( drrlF . Further, 

we use this location functional in defining a spatial skewness measure.  
We can find other notions of location functional which can be associated 

with the spatial median. We notice extending of the univariate interquantile in-
tervals to multivariate “median balls” indexed by their radii, as a family of “cen-
tral regions” which provide optimal summaries in a certain L1 sense, and a corre-
sponding location functional is defined by the centers of the balls. This location 
functional also is identically MF in the case of a centrally symmetric F. 
 
 
3. Spatial central regions and spread measures 
 

Corresponding to the spatial quantile function QF , we call:  
CF (r) = {QF (u) : u  ≤ r} 

the rth central region.  
 

When F is centrally symmetric, the skew-symmetry of QF −MF, given  
by (6) yields that the regions CF(r) additionally have the useful property of being 
symmetric sets, in the sense that for each point x in CF(r) its reflection about MF 
is also in CF(r). It is clear that the central regions CF(r) are equivariant under 
shift, orthogonal and homogeneous scale transformations. 
 

Definition 2. The (real-valued) volume functional corresponding to QF is defined by:  
 

vF (r) = volume (CF (r)), 0 ≤ r < 1. 
 

For each r, vF (r) provides a dispersion measure. 
It is invariant under shift and orthogonal transformations, and vF(r)1/d is 

equivariant under homogeneous scale transformations. As an increasing function 
of the variable r, vF(r) characterizes the dispersion of F in terms of expansion of 
the central regions CF(r). 

Analogous to the scale curve introduced by Liu, Parelius and Singh [1999] 
in connection with depth-based central regions indexed by their probability 
weight, the spatial volume functional may likewise be plotted as a “scale curve” 
over 0 ≤ r < 1, thus providing a convenient two-dimensional device for the 
viewing or comparing of multivariate distributions of any dimension.  
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Alternatively, two multivariate distributions F and G may be compared via 
a spread-spread plot, the graph of vG v−1

F . Since the central regions are ordered 
and increase with respect to the spatial “outlyingness” parameter r that describes 
their boundaries, i.e., r < r′  implies CF (r) ⊂  CF ( r′ ), their probability 
weights p increase with r. Thus the central regions and associated volume func-
tional and scale curve can equivalently be indexed by the probability weight of 
the central region. This relationship may be described by a mapping 

rF pr →:ψ ∈ [0, 1), with inverse pF rp →− :1ψ  (thus )(rp Fr ψ=  and 
)(1 pr Fp

−=ψ ), but characterization of this mapping is complicated. 
Different notion of spatial dispersion function based on the median balls 

was developed by Avérous and Meste [1997]. Under regularity conditions on F, 
the probability weight of a median ball is a nondecreasing function of its radius, 
even in cases when the balls are not ordered by inclusion. This yields an ana-
logue of the scale curve described above. 
 

Definition 3. Matrix-valued dispersion measures. As an analogue of the usual 
covariance matrix, one can also consider matrix-valued dispersion measures 
based on the spatial quantiles: 

( )( )∫
−

′−−= )(
)0(1

)()(
d

duMuQMuQFS FFFF
B

λ
 

for measures λ(du) on Bd−1(0).  
For example, a suitable choice of λ(·) yields a trimmed dispersion measure. 

Such scatter matrices contain information on the shape and orientation of the 
probability distribution as well as on the variations and mutual dependence  
of the coordinate variables. 

Real-valued “generalized variance” measures are provided by the corre-
sponding determinants. We note that the spatial version of S(F) satisfies the  
“covariance equivariance”: 

S(FAX+b) = AS(FX)A' 
for all d × d (proportionally) orthogonal A and all b ∈ Rd. 
 
 
4. Spatial skewness and kurtosis functional measures 
 

In general, a skewness measure should be location and scale free and in the 
case of a “symmetric” distribution, equal zero. Classical univariate quantitative 
skewness measures thus have the form of a difference of two location measures 
divided by a scale measure, whereby skewness then is characterized by a sign 
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indicating direction and a magnitude measuring asymmetry. Along with such 
measures, associated notions of the ordering of distributions according to their 
skewness have been developed. Extension of the above notion of a skewness 
measure to the multivariate case should in principle yield a vector, thus again 
characterizing skewness by both a direction and an asymmetry measure. 

We must specify a notion of multivariate symmetry relative to which skew-
ness represents a deviation. So, we require a quantitative skewness measure to 
reduce to the null vector in the case of central symmetry. 

Avérous and Meste [1997] open up a broader treatment by introducing two 
vector-valued skewness functionals oriented to the spatial median, along with 
corresponding definitions of quantitative skewness, directional qualitative skew-
ness, and directional ordering of multivariate distributions. In particular, one of 
skewness functionals is given by the difference of the “median balls” location 
functional and the spatial median MF, divided by a fixed real-valued scale pa-
rameter, the inverse of the density of F evaluated at the spatial median.  
 

Definition 4. Utilizing instead the spatial location and volume functionals,  
a spatial skewness functional is defined as: 
 

                                     
d

F

FF
F rv

Mrlrs /1)(
)(2)( −

= , 0 < r < 1,                               (10) 

which in the case of centrally symmetric F reduces appropriately to the null vec-
tor, each r.  

Note that the scale factor in the denominator is allowed to depend on r. The 
power 1/d for vF (r) makes sF (r) invariant under any homogeneous scale trans-
formation. For each r = r0, sF (r0) represents a quantitative vector-valued skew-
ness measure, indicating an overall direction of skewness. More generally, such 

a measure is given by any weighted average, βμ(F) = ∫
1

0

)()( drrsF μ , taken with 

respect to a probability measure μ(dr) on [0, 1) not depending on F. Further, we 
obtain quantitative real-valued measures of the skewness of F in any particular 
direction h, taken from the median MF , by taking scalar products with the vector 
measures: 

<sF(r), h >, 0 < r < 1, and < βμ(F), h>. 
We can take <sF(r), h >, 0 < r < 1, as a functional real-valued measure of 

skewness in the direction h. This provides a basis for straightforward qualitative 
notions of skewness. 
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Definition 5. Asymmetry measures. Vector-valued spatial skewness functional yields  
a corresponding real-valued asymmetry functional, which we can notice in the formula: 

d
F

S
FFF

F rv

MuQuQ

rs
d
r

1
)0(1

)()(

2)(
)(

−−+

=
∫
− , 0 < r < 1, 

from which is obtained a real-valued index of asymmetry AF = sup0<r<1 )(rsF .  

The latter index extends a measure of asymmetry for the univariate case 
suggested by MacGillivray [1986] and likewise may be used to order distribu-
tions: “F is less asymmetric than G”, written F p A G, if AF ≤ AG.  

Like )(rsF , by (6) it equals zero in the case of centrally symmetric F.  

As seen below, it coincides with )(rsF  in the univariate case. Also, its supre-

mum over r yields an alternative asymmetry measure. 
 

Definition 6. Asymmetry curves. Analogous to the scale curve, a plot of the asym-
metry functional )(rsF , 0 < r < 1, as a “spatial skewness curve” provides a con-

venient two-dimensional summary of the skewness of a multivariate distribution. 
Likewise we may plot a directional version <sF(r), h>, 0 < r < 1, for any se-

lected direction h. An alternative summary, related to (11), is given by a plot of:  
 

FF

FF

ru MuQ
MuQ

−−
−

= )(
)(

sup , 0 < r < 1. 

 

By (6), we see that in the case of centrally symmetric F, this curve follows 
the constant level 1. In the univariate case it is equivalent to a plot of 
F−1(1−p)−F−1(1/2) versus F−1(1/2)−F−1(p). 

Another type of asymmetry curve is obtained by adapting one given by Liu, 
Parelius and Singh [1999] in the context of depth-based central regions. For each r, 
let IF (r) denote the intersection of the central region CF (r) and its reflection 
about MF , and let w(r) denote the ratio of the volume of IF (r) to that of CF (r), 
over 0 < r < 1. For centrally symmetric F the intersection IF (r) coincides with 
CF (r) and thus w(r) ≡  1, a departure of F from central symmetry about MF is in-
dicated by the degree to which the curve w(r) lies below the constant level 1. 

Turning now to the multivariate case, and drawing upon the above discus-
sion, we consider kurtosis to characterize the relative degree, in a location- and 
scale-free sense, to which probability mass of a distribution is diminished in the 
“shoulders” and heavier in the either the center or tails or both. We thus distin-
guish peakedness, kurtosis and tailweight as distinct, although very much inter-
related, features of a distribution.  
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Definition 7. Based on the spatial volume functional, a spatial kurtosis functional 
can be notice as: 

⎟
⎠
⎞

⎜
⎝
⎛ −−⎟

⎠
⎞

⎜
⎝
⎛ +
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22
1

22
1

)(
rvrv

vrvrv
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FF

FFF

F
, 0 < r < 1.

 
 

We interpret kurtosis as measuring a feature which is interrelated with 
peakedness and tailweight but not to be equated with either of these. Here we 
comment on peakedness and tailweight as separate from kurtosis.  
 

Definition 8. A family of tailweight measures based on the spatial quantiles is given by: 
tF (r, s) = vF(r)/vF(s), 0 < r < s < 1, 

 

which reduces in the univariate case to ratios of the spread functional (9) evalu-
ated at different points. 

Using the term “kurtosis” for tailweight, a similar multivariate extension us-
ing depth-based central regions is given by Liu, Parelius and Singh [1999], who 
introduce a “fan plot” exhibiting the curves tF (r, s) for a fixed choice of r and se-
lected choices of s. They also introduce other forms of tailweight measures, i.e,  
a Lorenz curve and a “shrinkage plot”, which likewise may be formulated analo-
gously in terms of the spatial quantile function. Several multivariate distributions 
or data sets may be compared with respect to tailweight on the basis of their re-
spective (either spatial or depth-based) fan plots, Lorenz curves, or shrinkage 
plots. Asymptotics for sample versions of the kurtosis functional kF (·) and these 
other transforms of the volume functional may be derived from the asymptotics 
for the scale curve. 
 

 
 

Fig. 3. Median M and central regions CF (1/2 − r/2), CF (1/2), CF (1/2+ r/2),  
with A = CF (1/2) − CF (1/2 − r/2), and B = CF (1/2 + r/2) − CF (1/2) 
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It can be suggest that a measure of “kurtosis” (meaning tailweight) is given by 
any suitable ratio of two scale measures. Typical tailweight measures indeed are of 
this form, but such a restriction is too restrictive for the more refined notion of kur-
tosis as distinct from tailweight. The term “peakedness” is traditionally used syn-
onymously with “concentration” or inversely with “dispersion” or “scatter”.  

In particular, the latter authors provide a depth-based notion for ordering 
distributions by “more scattered”: relative to a depth function D(x, ·), the distri-
bution F on Rd is more scattered than the distribution G if the D-based volume 
functional for F lies above that of G. As an appropriate analogue in terms of the 
spatial quantile functional, we thus define:  
 

Definition 9. F is more scattered (less peaked) than G if vF (r) ≥ vG(r), 0 < r < 1.  
 
 
Concluding remarks 
 

We tried to present useful functional measures based on spatial quantiles.  
It can be used as a basis for a variety of useful upgrades and methodological 
techniques. We can extend the regression quantiles of Koenker and Bassett 
[1978] to many different case [Trzpiot, 2011a, 2011b, 2013a) and also to spatial 
quantiles regression [Trzpiot, 2012, 2013b]. As an analogue of procedures 
widely used in univariate data analysis, the use of bivariate QQ-plots based on 
spatial quantiles, can be illustrates along with some related devices. Chakraborty 
[2001] develops similar methods based on a modified type of sample spatial 
quantile. Also, as noted above, notions of multivariate ranks may be based on 
spatial quantiles. This suggests the possibility of spatial rank-rank plots. Finally, 
in the present paper we see that the spatial quantile function may serve effec-
tively as a descriptive measure. Some of them can be used in actuarial applica-
tion as a risk measures [Wolny-Dominiak, Trzpiot, 2013c]. 
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WYBRANE FUNKCJONAŁY − PRZESTRZENNE MIARY KWANTYLOWE 
 
Streszczenie: W artykule przedstawiono wybrane funkcjonały, które są odpornymi mia-
rami opisowymi. Miary te są definiowane z wykorzystaniem wielowymiarowych prze-
strzennych kwantyli. Zatem zapiszemy zadanie wielowymiarowe i dodatkowo wykorzy-
stamy jeden argument dla opisu przestrzennego. Wykorzystując opis jednowymiarowy, 
rozszerzymy je do zadania wielowymiarowego, zapisując odpowiednie miary położenia, 
rozproszenia, skośności i kurtozy. W modelowaniu ekstremalnego ryzyka ważne są włas-
ności ogonów rozkładów. Przedstawiono również miary skupione na ogonach rozkładów.  
 
Słowa kluczowe: wielowymiarowe dystrybuanty, przestrzenne kwantyle, miary opisowe.  


