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Abstract 
 

Currently, an important issue in multi-criteria decision-making 

(MCDM) problems are vagueness and lack of precision of decision- 

-making information because of insufficient data and incapability of the 

decision maker to process the information. Intuitionistic fuzzy sets (IFS) 

are a solution to eliminate the vagueness and the uncertainty. While fuzzy 

sets (FS) deal with ambiguity and vagueness problem, IFSs have more 

advantages. Moreover, the CODAS-SORT method cannot handle the 

uncertainty and ambiguity of information provided by human judgments. 

The aim of this study is to develop an IF extension of CODAS-SORT 

combining this method with the IFS theory. To achieve this, we use the 

fuzzy weighted Euclidean distance and fuzzy weighted Hamming distance 

instead of the crisp distances. A case study of a supplier selection 

assessment is used to clarify the details of our proposed method. 
 

 

Keywords: multicriteria decision aid, sorting methods, CODAS-SORT, intuitionistic fuzzy set. 

 

1 Introduction 
 

MCDM helps the decision maker to evaluate several conflicting criteria. In real 

life, most problems have multiple objectives and need an assessment of several 

criteria. As a result, MCDM has become a significant problem and a great deal 

                                                 
*  Laboratory “Optimisation, Logistique et Informatique Décisionnelle” (OLID), University  

of Sfax, High Institute of Industrial Management of Sfax, Tunisia, e-mail: abirouhibi22 

@gmail.com, ORCID: 0000-0002-9056-5595. 
**  Laboratory “Optimisation, Logistique et Informatique Décisionnelle” (OLID), University  

of Sfax, High Institute of Industrial Management of Sfax, Tunisia, e-mail: hela_frikha 

_moalla@yahoo.fr, ORCID: 0000-0002-0233-697X. 



                      An Intuitionistic Fuzzy Extension of the CODAS-SORT Method  

 

111 

of research has gone into helping the decision maker to choose the best decisions. 

The categorization and classification of MCDM methods are defined in different 

ways by the authors. According to Roy (1985), the goal of MCDM is to solve one of 

three types of decision-making problems: (1) identifying a single best alternative or 

selecting a few best alternatives (choice), (2) ranking the alternatives from the best 

to the worst (ranking), (3) sorting the alternatives into predefined homogeneous 

classes (sorting). The study and application of the first two problems has occurred in 

several areas, while the sorting problems are handled in few studies. 

ELECTRE-Tri (Yu, 1992) is the first variant of ELECTRE for the sorting 

problems. After that, a few studies applied the transformation of ranking methods 

to deal with sorting problems, e.g., Electre Tri-C (Almeida-Dias, Figueira and 

Roy, 2010), ELECTRE Tri-nC (Almeida-Dias et al., 2010), ELECTRE-SORT 

(Ishizaka and Nemery, 2014), ELECTRE Tri-nB (Fernandez et al., 2017). 

ELECTRE is not the only ranking method that has been adapted to solve the 

sorting problem. For example, UTADIS was introduced as a sorting variant of the 

UTA method (Jacquet-Lagreze and Siskos, 1982). The Promethee variants in the 

sorting environment are the best known. Figueira, Smet and Brans (2004) 

developed PROMETHEE TRI, which is the first variant of PROMETHEE to 

solve a sorting problem. PROMSORT is a sorting methodology based on 

PROMETHEE (Araz and Ozkarahan, 2005). PROMSORT has two important 

advantages over PROMETHEE TRI. FlowSort (Nemery and Lamboray, 2008) is 

an variant of Promethee. Then, Ishizaka, Pearman and Nemery (2012) developed  

a sorting extension of AHP, namely AHPSort, while Nemery et al. (2012) 

developed GAIASort, an extension of GAIA. TOPSIS-Sort (Sabokbar et al., 2016) 

supports sorting problems with TOPSIS. MACBETHSort (Ishizaka and Gordon, 

2017) is a sorting variant of MACBETH. VIKORSORT (Demir et al., 2018) is  

a sorting extension of VIKOR and DEASORT (Ishizaka et al., 2018) is a sorting 

extension of DEA.  

Keshavarz Ghorabaee et al. (2016) proposed a different outranking MCDM 

method which addresses the ranking problem with the calculation of two 

distances. This advantage gives CODAS more credibility for the decision maker. 

The Euclidean distance of alternatives from the “negative-ideal” solution is the 

first measure and the Taxicab distance is the secondary measure. The most 

desirable alternative is the one farthest from the negative ideal solution. In this 

method, the Taxicab distance is used as a secondary measure when there are two 

incomparable alternatives according to the Euclidean distance. According to 

these cases, the calculation of the assessment score of the alternatives is  

a combination of the Euclidean and Taxicab distances. The assessment score 

makes it possible to rank the alternatives from the best to the worst.     
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For sorting, Ouhibi and Frikha (2019) introduced CODAS-SORT, a variant of 

CODAS. The assignment rules use two measures. The first measure is the 

Euclidean distance and the second one is the Taxicab distance. The difference 

between these two distances define the assignment rules. However, a problem of 

human judgments is its ambiguity but the CODAS-SORT method cannot deal 

with this problem. For this reason, we resort to use an IF environment. 

According to Zadeh (1975), FST is an extension of classical set theory 

(Lemaire, 1990). In real-life conditions, the information and data collected are 

multiple and sometimes contradictory. For this reason, the evaluation criteria are 

difficult to express. To solve this problem, the concepts from the IFS theory are 

more appropriate for dealing with vagueness than other generalized FS models 

(Gautam, Abhishekh and Singh, 2016). Atanassov (1986) introduced an IFS that 

is an extension of the classical FST; it is characterized by a membership function 

and a non-membership function.   

In this study, an IF extension of the CODAS-SORT method is proposed to 

handle the sorting problem in an uncertain environment. A case study is added to 

indicate the reliability of the proposed IF-CODAS-SORT method. The rest of 

this paper is organized as follows. In Section 2, some basic concepts and 

definitions of intuitionistic fuzzy sets are presented. In Section 3, an extension of 

the CODAS-SORT method is proposed to handle IF multi-criteria decision- 

-making. Then the proposed IF-CODAS-SORT method is applied to a case study 

in Section 4. Finally, conclusions and suggestions for further research are 

presented. 
 

2  Fuzzy sets and intuitionistic fuzzy sets 
 

In this section, the basic definitions for the IFS and some IFS-based MCDM 

problems are reviewed.  
 

Definition 1. Fuzzy sets (Zadeh, 1975) 

FST is an extension of classical set theory. However, there is a relaxation of the 

concept of membership that occurs in the classical theory (Lemaire, 1990).  

The set X is a universe of discourse, and a fuzzy set 𝑎̃ is characterized by  

a membership function 𝜇𝑎̃(𝑥), for 𝑥 ∈ 𝑋, which measures the degree of  

x belonging to 𝑎̃. 𝛼.  𝜇𝑎̃(𝑥) represents the membership of x in 𝑎̃. 
 

                                           𝛼 = {(𝑥, 𝜇𝛼̃(𝑥))|𝑥 ∈ 𝑋}                                           (1) 
 

Definition 2. Intuitionistic fuzzy set  

IFS introduced by Atanassov (1986) is an extension of the classical FST, which 

is a suitable way to deal with vagueness. 
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Assuming that X is a collection of objects x and 𝛽 ∈ 𝑋 is a fixed set, the IFS 

𝛽 on X is defined as (Atanassov, 1986): 
 

                                     𝛽 = {(𝑥, 𝜇𝛽(𝑥), 𝜐𝛽(𝑥)) |𝑥 ∈ 𝑋}                                    (2) 
 

where 𝜇𝛽(𝑥): 𝑋 → [0,1], 𝑥 ∈ 𝑋 → 𝜇𝛽(𝑥) ∈ [0,1] represents the degree of 

membership of element 𝑥 ∈ 𝑋 in set 𝛽, and 𝜐𝛽(𝑥): 𝑋 → [0,1], 𝑥 ∈ 𝑋 → 𝜐𝛽(𝑥) ∈ 

∈ [0,1] is the degree of non-membership of element 𝑥 ∈ 𝑋 in set 𝛽. 

𝜇𝛽 and 𝜐𝛽(𝑥)  usually satisfy  0 ≤ 𝜇𝛽(𝑥) + 𝜐𝛽(𝑥) ≤ 1 for all 𝑥 ∈ 𝑋. Besides 

the degree of membership and non-membership, an indeterminacy degree, so-called 

“hesitancy degree” of x to 𝛽, which is different from the numbers 𝜇𝛽(𝑥) and 𝜐𝛽(𝑥) 

and which measures the degree of indeterminacy of 𝑥 ∈ 𝑋 to 𝛽 is defined as: 
 

                                       𝜋𝛽(𝑥) = 1 − 𝜇𝛽(𝑥) − 𝜐𝛽(𝑥)                                       (3) 
 

Accordingly, an intuitionistic fuzzy number 𝛽 can be represented as 

𝛽 = (𝜇𝛽 , 𝜐𝛽 , 𝜋𝛽), which included the degree of membership, of non- 

-membership, and of indeterminacy. 
 

Definition 3. Arithmetic operations (Xu and Yager, 2006) 

Let 𝛾 = (𝜇𝛾 , 𝜐𝛾 , 𝜋𝛾) and 𝛽 = (𝜇𝛽 , 𝜐𝛽 , 𝜋𝛽) be two intuitionistic fuzzy numbers; 

the arithmetic operations on these numbers are defined as follows:  

Addition: 
 

 𝛾⨁𝛽 = (𝜇𝛾 , 𝜐𝛾 , 𝜋𝛾)⨁(𝜇𝛽 , 𝜐𝛽 , 𝜋𝛽)  =    

                   = 𝜇𝛾 + 𝜇𝛽 − 𝜇𝛾𝜇𝛽 , 𝜐𝛾𝜐𝛽 , 1 + 𝜇𝛾𝜇𝛽 − 𝜇𝛾 − 𝜇𝛽 − 𝜐𝛾𝜐𝛽                  (4) 
 

𝑛
⨁

𝑗 = 1
𝛾𝑗 =

𝑛
⨁

𝑗 = 1
(𝜇𝛾𝑗

, 𝜐𝛾𝑗
, 𝜋𝛾𝑗

) =  

               = 1 − ∏ (1 −𝑛
𝑗=1 𝜇𝛾𝑗

), ∏ 𝜐𝛾𝑗

𝑛
𝑗=1 , ∏ (1 −𝑛

𝑗=1 𝜇𝛾𝑗
) − ∏ 𝜐𝛾𝑗

𝑛
𝑗=1 )            (5) 

 

Multiplication: 
 

𝛾⨂𝛽 = (𝜇𝛾 , 𝜐𝛾 , 𝜋𝛾)⨂(𝜇𝛽 , 𝜐𝛽 , 𝜋𝛽) = 

                  = (𝜇𝛾𝜇𝛽 , 𝜐𝛾 + 𝜐𝛽 − 𝜐𝛾𝜐𝛽 , 1 + 𝜐𝛾𝜐𝛽 − 𝜇𝛾𝜇𝛽 − 𝜐𝛾 − 𝜐𝛽)                 (6) 
 

𝑛
⨂

𝑗 = 1
𝛾𝑗 =

𝑛
⨂

𝑗 = 1
(𝜇𝛾𝑗

, 𝜐𝛾𝑗
, 𝜋𝛾𝑗

)  =  

              = (∏ 𝜇𝛾𝑗

𝑛
𝑗=1 , ∏ (1 − 𝜐𝛾𝑗

)𝑛
𝑗=1 , 1 − ∏ 𝜇𝛾𝑗

𝑛
𝑗=1 ) − ∏ (1 − 𝜐𝛾𝑗

)𝑛
𝑗=1 )        (7) 
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Scale multiplication: 
 

                         𝜆𝛾 = (1 − (1 − 𝜇𝛾)
𝜆

, (𝜐𝛾)
𝜆

, (1 − 𝜇𝛾)
𝜆

− (𝜐𝛾)
𝜆

)                    (8) 
 

where 𝜆 is a crisp number. 
 

Definition 4. Geometric distance (Szmidt and Kacprzyk, 2000) 

The Hamming distance is defined as: 
 

      𝐷(𝛾, 𝛽) =
1

2
∑ (|𝜇𝛾(𝑥𝑗) − 𝜇𝛽(𝑥𝑗)| + |𝜐𝛾(𝑥𝑗) − 𝜐𝛽(𝑥𝑗)| + |𝜋𝛾(𝑥𝑗) − 𝜋𝛽(𝑥𝑗)|)𝑛

𝑗=1   (9) 
 

The Euclidean distance is defined as: 
 

      𝐷(𝛾, 𝛽) = √
1

2
∑ [(𝜇𝛾(𝑥𝑗) − 𝜇𝛽(𝑥𝑗))

2
+ (𝜐𝛾(𝑥𝑗) − 𝜐𝛽(𝑥𝑗))

2
+ (𝜋𝛾(𝑥𝑗) − 𝜋𝛽(𝑥𝑗))

2
]𝑛

𝑗=1  (10) 

 

3  The intuitionistic fuzzy CODAS-SORT method 
 

In this section, we present an IF extension of the CODAS-SORT method to deal 

with sorting problem. As already declared, CODAS-SORT is a new sorting 

method based on CODAS. It is easy to apply and simple to deal with for DM. 

The use of two measures defines the assignment rules. The first measure is the 

Euclidean distance and the second one is the Taxicab distance. However, we 

cannot use the Euclidean and Taxicab distances in IF problems, because they are 

defined in a crisp environment. Because of that, we replaced the Taxicab 

distance by the Hamming distance. Since the aim of this study is to propose an 

IF extension of CODAS, instead of crisp distances, we use the fuzzy weighted 

Euclidean distance and the fuzzy weighted Hamming distance, which were 

introduced by Li (2007). Suppose that we have n alternatives and m criteria. 

The steps of the IF-CODAS-SORT method are the following: 
 

Step 1. Construct the IF decision matrix (𝐷𝑋): 

Determining the IF decision-making matrix. Assuming that there are m alternatives 

(A1, A2, … , Am) to be evaluated with respect to n criteria (M1, M2, …, Mn): 
 

𝐷𝑋 =

                 
𝐴1

𝐴2

⋮
𝐴𝑚

 
 

𝑀1

(𝜇11
𝑋 , 𝜐11

𝑋 , 𝜋11
𝑋 )

𝑀2

(𝜇12
𝑋 , 𝜐12

𝑋 , 𝜋12
𝑋 )

 
… 

𝑀𝑛

(𝜇1𝑛
𝑋 , 𝜐1𝑛

𝑋 , 𝜋1𝑛
𝑋 )

(𝜇21
𝑋 , 𝜐21

𝑋 , 𝜋21
𝑋 )

⋮
(𝜇22

𝑋 , 𝜐22
𝑋 , 𝜋22

𝑋 )
⋮

… (𝜇2𝑛
𝑋 , 𝜐2𝑛

𝑋 , 𝜋2𝑛
𝑋 )

⋱     ⋮    
(𝜇𝑚1

𝑋 , 𝜐𝑚1
𝑋 , 𝜋𝑚1

𝑋 ) (𝜇𝑚2
𝑋 , 𝜐𝑚2

𝑋 , 𝜋𝑚2
𝑋 )  … (𝜇𝑚𝑛

𝑋 , 𝜐𝑚𝑛
𝑋 , 𝜋𝑚𝑛

𝑋 )

  (11) 

 

where 𝐷𝑋 is the decision-making matrix, and 𝜇𝑖𝑗
𝑋 , 𝜐𝑖𝑗

𝑋 , 𝜋𝑖𝑗
𝑋  are the relative 

performances of the ith alternative with respect to the jth criterion.  
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Step 2. Construct the IF profile matrix (𝐷𝑌): 

Determining the IF decision-making matrix. Assuming that there are  

l profiles (B1, B2, … , Bl) to be evaluated with respect to n criteria M1, M2, …, Mn): 
 

𝐷𝑌 =

                 
𝐵1

𝐵2

⋮
𝐵𝑙

 
 

𝑀1

(𝜇11
𝑌 , 𝜐11

𝑌 , 𝜋11
𝑌 )

𝑀2

(𝜇12
𝑌 , 𝜐12

𝑌 , 𝜋12
𝑌 )

 
… 

𝑀𝑛

(𝜇1𝑛
𝑌 , 𝜐1𝑛

𝑌 , 𝜋1𝑛
𝑌 )

(𝜇21
𝑌 , 𝜐21

𝑌 , 𝜋21
𝑌 )

⋮
(𝜇22

𝑌 , 𝜐22
𝑌 , 𝜋22

𝑌 )
⋮

… (𝜇2𝑛
𝑌 , 𝜐2𝑛

𝑌 , 𝜋2𝑛
𝑌 )

⋱     ⋮    
(𝜇𝑙1

𝑌 , 𝜐𝑙1
𝑌 , 𝜋𝑙1

𝑌 ) (𝜇𝑙2
𝑌 , 𝜐𝑙2

𝑌 , 𝜋𝑙2
𝑌 )  … (𝜇𝑙𝑛

𝑌 , 𝜐𝑙𝑛
𝑌 , 𝜋𝑙𝑛

𝑌 )

           (12) 

 

where 𝐷𝑌 is the profiles matrix, and 𝜇𝑘𝑗
𝑋 , 𝜐𝑘𝑗

𝑋 , 𝜋𝑘𝑗
𝑋  are the relative performances of 

kth profile with respect to jth criterion. 
 

Step 3. Determine the IF negative-ideal solution: 

𝑁𝐼𝑆𝑗  is the anti-ideal solution of the decision matrix: 
 

                              𝑁𝐼𝑆𝑗 = (𝑢𝑗
𝑋 , 𝑣𝑗

𝑋 ,  𝜋𝑗
𝑋), j = 1, 2, …, n  (13) 

                                                 𝑡 =  𝑎𝑟𝑔min
𝑖

(𝑢𝑖𝑗
𝑋 )  (14) 

                                                          𝑡 =  𝑢𝑡𝑗
𝑋   (15) 

                                                        𝑢𝑗
𝑋 =  𝑢𝑡𝑗

𝑋    (16) 

                                                        𝑣𝑗
𝑋 = 𝑣𝑡𝑗

𝑋   (17) 

                                                𝜋𝑗
𝑋 = 1 − 𝑢𝑡𝑗

𝑋 − 𝑣𝑡𝑗
𝑋   (18) 

 

𝑀𝐼𝑆𝑗  is the anti-ideal solution of the profiles matrix:  
 

                             𝑀𝐼𝑆𝑗 = (𝑢𝑗
𝑌, 𝑣𝑗

𝑌 ,  𝜋𝑗
𝑌), j = 1, 2, …, n  (19) 

                                                𝑡 =  𝑎𝑟𝑔min
𝑘

(𝑢𝑘𝑗
𝑌 )  (20) 

                                                         𝑡 =  𝑢𝑘𝑗
𝑌   (21) 

                                                       𝑢𝑗
𝑌 =  𝑢𝑘𝑗

𝑌   (22) 

                                                       𝑣𝑗
𝑌 = 𝑣𝑘𝑗

𝑌   (23) 

                                              𝜋𝑗
𝑌 = 1 − 𝑢𝑘𝑗

𝑌 − 𝑣𝑘𝑗
𝑌   (24) 

 

Step 4. Calculate the IF weighted Euclidean distances of alternatives from the IF 

negative-ideal solution: 
 

                 𝐸𝑎𝑖
=  √

1

2
∑ (𝑢𝑖𝑗

𝑋 − 𝑢𝑗
𝑋)

2𝑛
𝑗=1 + (𝑣𝑖𝑗

𝑋 − 𝑣𝑗
𝑋)

2
+ (𝜋𝑖𝑗

𝑋 − 𝜋𝑗
𝑋)

2
  (25) 

 

where 𝐸𝑎𝑖
 denotes the Euclidean distance between the action 𝑎𝑖  and the 

negative-ideal solution 𝑁𝐼𝑆𝑗: 
 

                 𝐸𝑏𝑘
= √

1

2
∑ (𝑢𝑘𝑗

𝑌 − 𝑢𝑗
𝑌)

2𝑛
𝑘=1 + (𝑣𝑘𝑗

𝑌 − 𝑣𝑗
𝑌)

2
+ (𝜋𝑘𝑗

𝑌 − 𝜋𝑗
𝑌)

2
  (26) 

 

where 𝐸𝑏𝑘
 denotes the Euclidean distance between the limit 𝑏𝑘 and the negative-

-ideal solution 𝑀𝐼𝑆𝑗 . 
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Step 5. Calculate the IF weighted Hamming distances of alternatives from the IF 

negative-ideal solution: 
 

                     𝐻𝑎𝑖
=

1

2
∑ (|𝑢𝑖𝑗

𝑋 − 𝑢𝑗
𝑋| + |𝑣𝑖𝑗

𝑋 − 𝑣𝑗
𝑋| + |𝜋𝑖𝑗

𝑋 − 𝜋𝑗
𝑋|)𝑛

𝑗=1   (27) 
 

where 𝐻𝑎𝑖
denotes the Hamming distance between the action 𝑎𝑖 and the negative-

-ideal solution 𝑁𝐼𝑆𝑗: 
 

                    𝐻𝑏𝑘
=

1

2
∑ (|𝑢𝑘𝑗

𝑌 − 𝑢𝑗
𝑌| + |𝑣𝑘𝑗

𝑌 − 𝑣𝑗
𝑌| + |𝜋𝑘𝑗

𝑌 − 𝜋𝑗
𝑌|)𝑛

𝑗=1   (28) 
 

where 𝐻𝑏𝑘
 denotes the Hamming distance between the limit 𝑏𝑘 and the negative-

-ideal solution 𝑀𝐼𝑆𝑗. 
 

Step 6. Determine the relative assessment matrix: 
 

                𝑅(𝑎𝑖 , 𝑏𝑘) = [𝐸𝑎𝑖
 − 𝐸𝑏𝑘

] + (𝜓[𝐸𝑎𝑖
 − 𝐸𝑏𝑘

] ∗ [ 𝐻𝑎𝑖
− 𝐻𝑏𝑘

])  (29) 
 

where 𝑘  ∈ {1, 2,… , 𝑛 } and 𝜓  denotes a threshold function to determine the 

equality of the Euclidean distances of two alternatives, and is defined as follows:  
 

                                      𝜓(𝑥) = {
1                   if |𝑥| ≥ 𝜏
0                   if |𝑥| < 𝜏

  (30) 

 

In this function, 𝜏 is the threshold parameter that can be set by the DM. It is 

suggested to fix this parameter at a value between 0.01 and 0.05.  

If the difference between the Euclidean distances of two alternatives is less 

than 𝜏, these two alternatives are also compared by the Hamming distance. In 

this study, we use 𝜏 = 0.02 for the calculations. 
 

Step 7. Assign alternatives to categories: To assign an alternative 𝑎𝑖 to one of the 

predefined categories, there are two ways that depend on the type of the 

available profile provided by the decision maker: 
 

Central profiles: 

If central profiles have been defined, the alternative 𝑎𝑖 is assigned to the class 𝐶𝑘 

which has the smallest | 𝑅(𝑎𝑖 , 𝑏𝑘)|. 

If | 𝑅(𝑎𝑖 , 𝑏𝑘)| is the smallest then 𝑎𝑖 ∈ 𝐶𝑘. 
 

Limiting profiles: 

When the difference between the two distances is minimal, the alternative and 

the center of the category are very near and if the difference is negative or 

positive, the alternative belongs to the category that has the minimum difference. 

If limiting profiles have been defined and |R(𝑎𝑖 , 𝑏𝑘)| is the smallest then there are 

two cases: 
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− If 𝑅(𝑎𝑖 , 𝑏𝑘) ≥ 0 then alternative 𝑎𝑖 is assigned to class 𝐶𝑘. 

− If 𝑅(𝑎𝑖 , 𝑏𝑘) < 0 then alternative 𝑎𝑖  is assigned to class 𝐶𝑘−1. 
 

4  Case study: Suplier selection 

 

The case problem allows evaluating and assessing seven suppliers (a1, a2, a3, a4, 

a5, a6, a7). The proposed evaluation framework was applied at a company N,  

a maker of perfumery, hygiene, health and cosmetic products. An expert 

evaluates the suppliers with respect to four criteria: Price, Product quality, 

Delivery and Agility. These seven suppliers are divided into three groups: Worst C1, 

Moderate C2, and Best C3. After determining the list of alternatives, we evaluate 

them with regard to each criterion (Table 1). 

 
Table 1: Performance matrix 

 

 C1 C2 C3 C4 

𝒂𝟏 (0.50, 0.10, 0.40) (0.60, 0.10, 0.30) (0.40, 0.10,0.50) (0.70, 0.10, 0.20) 

𝒂𝟐 (0.20, 0.40, 0.40) (0.40, 0.20, 0.40) (0.50, 0.10, 0.40) (0.20, 0.30, 0.50) 

𝒂𝟑 (0.40, 0.50, 0.10) (0.50, 0.10, 0.40) (0.40, 0.20, 0.40) (0.50, 0.10, 0.40) 

𝒂𝟒 (0.50, 0.10, 0.40) (0.50, 0.10, 0.40) (0.40, 0.30, 0.30) (0.20, 0.40, 0.40) 

𝒂𝟓 (0.50, 0.20, 0.30) (0.60, 0.10, 0.30) (0.50, 0.20, 0.30) (0.70, 0.20, 0.10) 

𝒂𝟔 (0.20, 0.20, 0.60) (0.40, 0.20, 0.40) (0.50, 0.10, 0.40) (0.40, 0.30, 0.30) 

𝒂𝟕 (0.40, 0.10, 0.50) (0.50, 0.00, 0.50) (0.40, 0.30, 0.30) (0.50, 0.20, 0.30) 

 𝑁𝐼𝑆𝑗 (0.20, 0.20, 0.60) (0.40, 0.20, 0.40) (0.40, 0.10, 0.50) (0.20, 0.30, 0.50) 

 

Thereafter, the decision maker is invited to provide a list of classes. We 

evaluate the limiting profiles with regard to each criterion (Table 2). 
 

Table 2: Limiting profiles 
 

 
C1 C2 C3 C4 

𝒃𝟏 (0.40, 0.20, 0.40) (0.40, 0.20, 0.40) (0.40, 0.25, 0.35) (0.40, 0.25, 0.35) 

𝒃𝟐 (0.60, 0.30, 0.10) (0.60, 0.30, 0.10) (0.55, 0.30, 0.15) (0.55, 0.30, 0.15) 

 𝑀𝐼𝑆𝑗 (0.40, 0.20, 0.40) (0.40, 0.20, 0.40) (0.40, 0.25, 0.35) (0.40, 0.25, 0.35) 

 

Next, we calculate the Euclidean and Hamming distances of the alternatives 

and limits from the negative-ideal solution (Tables 3 and 4): 
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Table 3: Euclidian and Hamming distances (actions) 
 

 Distances 

Alternatives 𝑬𝒂𝐢
 𝑯𝒂𝐢

 

𝒂𝟏 0.29 1 

𝒂𝟐 0.05 0.3 

𝒂𝟑 0.28 1 

𝒂𝟒 0.125 0.7 

𝒂𝟓 0.36 1.2 

𝒂𝟔 0.05 0.3 

𝒂𝟕 0.17 0.9 

 

Table 4: Euclidian and Hamming distances (profiles) 
 

 
Distances 

Profiles 𝑬𝒃𝐢
 𝑯𝒃𝐢

 

𝒃𝟏 0 0 

𝒃𝟐 0.205 0.82 

 

The construction of the relative evaluation matrix is as follows (Table 5): 

First, we set τ = 0.02 

Example of calculation: 
 

ℎ(𝑎1, 𝑏1) =  (0.29 − 0) + [(0.29 − 0) ∗ (1 − 0)] = 0.58 
 

The other relative evaluations are shown in Table 5.  
 

Table 5: Relative evaluation matrix 
 

 𝒃𝟏 𝒃𝟐 

𝒂𝟏 0.58 0.1 

𝒂𝟐 0.065 −0.075 

𝒂𝟑 0.56 0.89 

𝒂𝟒 0.11 −0.07 

𝒂𝟓 0.79 0.2 

𝒂𝟔 0.065 −0.074 

𝒂𝟕 0.323 −0.038 

 

The assignment of alternatives to categories is presented in Table 6. 

For example: 

Since |𝑅(𝑎3, 𝑏1)| is the smallest, we have 𝑅(𝑎3, 𝑏1) ≥ 0, and alternative  𝑎3 is 

assigned to class 𝐶2. 

Since |𝑅(𝑎4, 𝑏2)| is the smallest, we have 𝑅(𝑎4, 𝑏2) < 0, and alternative 𝑎4 is 

assigned to class 𝐶2. 

 



                      An Intuitionistic Fuzzy Extension of the CODAS-SORT Method  

 

119 

Table 6: The final classification of the actions 
 

Actions Categories 

𝒂𝟏 𝐂𝟑 

𝒂𝟐 𝐂𝟐 

𝒂𝟑 𝐂𝟐 

𝒂𝟒 𝐂𝟐 

𝒂𝟓 𝐂𝟑 

𝒂𝟔 𝐂𝟐 

𝒂𝟕 𝐂𝟐 

 

Suppliers a1 and a5 are assigned to the best group, whereas a2, a3, a4, a6 and 𝑎7 

are assigned to the moderate group.  

 

Sensitivity analysis 
 

A sensitivity analysis is also performed in this part to demonstrate the stability of 

the sorting result. First, five values of τ are generated. Then we solve the 

problem using each of these cases. The generated values of τ are shown in Table 7 

and the sorting results, in Figure 1. 
 

Table 7: Sorting results with different values of τ 
 

Actions 
0.01 

𝐂𝟑 

0.02 

𝐂𝟐 

0.03 

𝐂𝟑 

0.04 

 

0.05 

 

𝒂𝟏 3 3 3 3 3 

𝒂𝟐 2 2 2 3 2 

𝒂𝟑 2 2 1 2 2 

𝒂𝟒 2 3 2 2 2 

𝒂𝟓 3 3 3 3 3 

𝒂𝟔 2 2 2 2 2 

𝒂𝟕 2 2 3 1 1 

 

According to Figure 1 and Table 7, we can notice a good stability in the 

sorting of actions when the threshold parameter 𝜏  varies from 0.01 to 0.05. 

However, the modification of the 𝜏  parameter has a minor and neglected impact 

on the sorting of actions that can undermine the validity of the results. 

Consequently, we can affirm the performance of the IF-CODAS-SORT method. 

As indicated by the conclusions of this analysis, we can claim that our 

proposed method is proficient to handle MCDM problems. 

However, it may be seen from Table 7, that every one of the differences in 

sorting occurred between the successive classes, which confirms the consistency 

of the results. 
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Figure 1: Sorting results with different values of τ 
 

5  Application of the IR-CODAS model for risk assessment 
 

The development of an intuitionistic fuzzy CODAS-SORT method is the 

objective of this study. Indeed, CODAS-SORT deals with the sorting MCDM 

problem. This method sorts the alternatives into ordered classes based on the 

central and limiting profiles and using exact values. Since it is difficult for 

decision makers to precisely express their preferences, we have developed an  

IF-CODAS-SORT method which uses intuitionistic fuzzy numbers to express 

uncertain evaluations.  

An advantage of our result is that the assignment rules are based on the use of 

two measures. The first measure is based on the Euclidean distance. The second 

measure is the Hamming distance. The assignment rules are based on the 

difference between the two distances.  

In the future, we intend to develop an IF-CODAS-SORT approach in the 

group decision context (IF-GD-CODAS-SORT). 
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