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Abstract 
 

Crisp values are insufficient to model real-life situations and imprecise 

ideas are frequently represented in multicriteria decision aid analysis. In 

fact, it is difficult to treat the evaluation criteria precisely and to fix exact 

preferences rating. The triangular intuitionistic fuzzy numbers succeeded 

to treat this kind of ambiguity in a great deal of research than other forms 

of fuzzy representation functions. The field of sorting issues is an active 

research topic in the multiple criteria decision aid (MCDA). This study 

extended one of the sorting methods, FLOWSORT, for solving multiple 

criteria group decision-making problems. This extension described the 

preferences rating of alternatives as linguistic terms which can be easily 

expressed in triangular intuitionistic fuzzy numbers. To validate our 

extension, an illustrative example as well as an empirical comparison with 

other multi-criteria decision making methods is presented. 
 

 

Keywords: multicriteria group decision making, sorting problematic, intuitionistic fuzzy set, 

FlowSort method. 
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1 Introduction 
 

Multi-criteria decision making (MCDM) is considered an essential part of 

modern decision science and operational research. It is the process of finding the 

best compromise among the feasible alternatives. It provides a wide variety of 

methodologies and techniques that enable the systematic treatment of decision 

problems under multiple criteria. The MCDA methods can be applied to four 

different kinds of analyses that can be performed in order to provide significant 

support to decision-makers (Remadi and Frikha, 2019). These are: (1) the choice 

of the best alternative, (2) the ranking of the set of the alternatives from the best 

to the worst, (3) the description of the features of the alternatives and (4) the 

classification of the alternatives into predefined homogenous groups.  

In this paper, we study the ordinal classification problem, also called the 

sorting problem. It consists in orienting a decision problem to an assignment of 

alternatives to one of the predefined, ordered and homogenous categories or 

classes. Each class is a set of alternatives with similar properties or even values 

for the same properties, when compared to the alternatives of from the other 

classes. Many methods have been proposed during the previous decades. Among 

these, we can mention the well-known sorting methods, the ELECTRE-TRI 

(Shen, Xu and Xu, 2016), the THESEUS (Fernandez and Navarro, 2011), etc. 

Relying on the PROMETHEE (Brans, Mareschal and Vincke, 1984) 

methodology, several authors proposed the PROMETHEE-TRI (Figueira, Smet 

and Brans, 2004), the PROMSORT (Araz and Ozkarahan, 2007) and the 

FlowSort (Nemery and Lamboray, 2007). In fact, the PROMETHEE is one of 

the best known MCDM methods, since it is easy to use, simple to process and 

uses fewer parameters than the other MCDM methods such as ELECTRE 

(Govindan and Jepsen, 2016). Figueira, Smet and Brans (2004) were pioneers in 

the PROMETHEE-TRI method, extending it to the sorting context, but it used 

incompletely ordered categories. In 2007, Araz and Ozkarahan (2007) proposed 

the PROMSORT method which used completely ordered categories, but the 

assignment of the alternatives was not independent.   

Developed by Nemery and Lamboray in 2007, FlowSort (Nemery and 

Lamboray, 2007) was proposed for assigning actions to completely ordered 

categories defined by limiting profiles or central profiles. It solves the drawbacks 

of PROMETHEE-TRI (Figueira, Smet and Brans, 2004) and PROMSORT (Araz 

and Ozkarahan, 2007) and treats the problematic sorting issue for independent 

assignments and completely ordered categories. The evaluation of alternatives and 

preference parameters of FlowSort are defined as crisp values. But, in a real-world 

situation, decisional problems are multidimensional and ambiguous in nature. 
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So, it is difficult to express the evaluation criteria precisely. Many extensions of 

FlowSort have been developed to solve these problems. Indeed, Janssen and 

Nemery (2012) proposed an extension of FlowSort to the case of input data 

imprecision. Moreover, Campos, Mareschal and Almeida (2015) extended FlowSort 

to introduce a fuzzy sorting method called Fuzzy FlowSort (F-FlowSort). For  

a simplified FlowSort version, Assche and De Smet (2016) found the parameters of 

a sorting model using classification examples in the context of traditional sorting and 

interval sorting. Moreover, Pelissari et al. (2019) suggested a new multicriteria 

method, SMAA-Fuzzy-FlowSort, for sorting problems under uncertainty through 

applying the Stochastic Acceptability Analysis to Fuzzy FlowSort.  

As stated above, the fuzzy set (FS) theory (Zadeh, 1965) has been 

successfully applied in a good number of studies. However, this theory is not 

flawless as it uses only the membership degree of an element to a fuzzy set 

which is between zero and one. Actually, it is necessary to define the non- 

-membership degree of an element to a fuzzy set, because it is not necessarily 

equal to 1 minus the degree of membership. To overcome this limitation, the 

intuitionistic fuzzy set theory concept seems more suitable to deal with 

uncertainty than other generalized fuzzy sets forms (Zhang, Jin and Liu, 2013). 

Furthermore, compared to the traditional fuzzy sets, the IFS can describe the 

fuzzy nature of the real world more comprehensively (Wang, Han and Zhang, 

2012). In fact, it provides more flexibility to treat real-life problems under an 

uncertain environment, because when the area of applications changes, the 

intuitionistic fuzzy sets are easy to modify (Zhang, Jin and Liu, 2013). 

Due to the complexity of the socio-economic environment, single decision- 

-makers are unable to express their opinions or preferences on multiple criteria. In 

fact, multiple criteria group decision making (MCGDM) problems constitute an 

important research area that has drawn the attention of many researchers. In 

addition, the intuitionistic fuzzy set theory was applied to solve real-life complex 

Multicriteria Group Decision Making problems. Park, Cho and Kwun (2011), for 

instance, extended the group decision-making VIKOR method to an interval-valued 

intuitionistic fuzzy environment, in which the information about attribute weights 

was partially known. In addition, Chen (2015) developed an extended TOPSIS 

(Chen and Hwang, 1992) method which included the comparison approach to 

address multiple criteria group decision-making medical problems in the interval- 

-valued intuitionistic fuzzy set framework. In the context of sorting problem, Shen, 

Xu and Xu (2016) provided a new outranking sorting method for solving Multi- 

-Criteria Group Decision Making (MCGDM) problems using Intuitionistic Fuzzy 

Sets (IFS). Furthermore, Lolli et al. (2015) introduced a group decision support 

system, named FlowSort-GDSS, for sorting failure modes into priority classes. 
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Thus, the first aim of our research, which is also at the heart of its originality, 

was to develop an extension of the FlowSort method to deal with the imprecision 

issue, using the IFS theory to solve MCGDM problems. It consists in 

aggregating the individual sorting results in a collective one and calculating the 

personal and the group satisfaction degrees. Shen, Xu and Xu (2016) defined the 

personal satisfaction degree as the mean average of the comparison of the group 

sorting results and the individual sorting results and the group satisfaction degree 

as the weighted average of the personal satisfaction degrees. If satisfaction is 

low, it will be necessary to recollect the input data.   

In addition, human judgments including preferences are difficult to define as 

numerical values. Also, the linguistic terms can simplify the process of an 

alternative rating by decision makers (DMs). Several operations on fuzzy 

numbers have been used to convert linguistic terms into IF numbers in the 

literature; the easiest to use are Triangular intuitionistic fuzzy numbers (Gautam, 

Singh and Singh, 2016). And here comes our second main original contribution, 

which lies in our choice to describe our decisional matrix through linguistic 

terms which are then, converted into triangular intuitionistic fuzzy values.   

The remaining of this paper is organized as follows: in the second section, we 

present the FlowSort method using crisp evaluations. We introduce the IFS 

theory notations and definitions in the third section. The fourth section is 

devoted to develop developing an extension of the FlowSort method based on 

the IFS theory to solve the Multicriteria group decision making problem. Section 

five includes a numerical example and a comparison of the achieved results with 

those of other MCDA methods. The final section provides conclusions and 

suggests further research issues. 
 

2  The FlowSort method 
 

The FlowSort method is an ordinal classification method based on the ranking 

methodology of the PROMETHEE method. We first summarized the 

PROMETHEE algorithm which is based on the principle of pairwise 

comparisons of the alternatives. It aggregates the preference information of  

a DM through valued preference relations (Brans, Mareschal and Vincke 1984; 

Brans and Mareschal, 2005). Let A = {𝑎1, 𝑎2, … , 𝑎𝑛} be a set of alternatives 

and G = {𝑔1, 𝑔2, … , 𝑔𝑚} be a set of criteria. A 𝑤𝑘 weight, k = 1, … , m, for 

each criterion should be well-known by the DM. 

The preference function 𝑃𝑘(𝑎𝑖 , 𝑎𝑗) represents the preference intensity of 𝑎𝑖 

over  𝑎𝑗 according to criterion  𝑔𝑘, for i = 1, … , n, j = 1, … , n and k = 1, … , m:  

𝑃𝐾(𝑎𝑖 , 𝑎𝑗) = 𝑃[𝑑𝐾(𝑎𝑖 , 𝑎𝑗)], where 𝑑𝐾(𝑎𝑖 , 𝑎𝑗) = 𝑔𝑘(𝑎𝑖)  𝑔𝑘(𝑎𝑗) for a criterion to 

maximize and 𝑑𝐾(𝑎𝑖 , 𝑎𝑗) = 𝑔𝑘(𝑎𝑗) − 𝑔𝑘(𝑎𝑖) for a criterion to minimize. 
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Six different types of preference functions were defined by Brans  

and Mareschal (2005). 

Therefore, we need to calculate the outgoing flow 

𝜙𝑖
+(𝑎𝑖) =  

1

𝑁−1
∑ (𝑥∈𝐴 𝑎𝑖 , 𝑥) and the incoming flow  𝜙𝑖

−(𝑎𝑖) =  
1

𝑁−1
∑ (𝑥∈𝐴 𝑥, 𝑎𝑖), 

for each alternative 𝑎𝑖. Three relations can be defined as follows: 

 The preference (P):  

If 𝜙𝑖
+(𝑎𝑖)  > 𝜙𝑖

+(𝑎𝑗) and 𝜙𝑖
−(𝑎𝑖) ≤ 𝜙𝑖

−(𝑎𝑗); or 𝜙𝑖
+(𝑎𝑖)= 𝜙𝑖

+(𝑎𝑗)  

and 𝜙𝑖
−(𝑎𝑖) < 𝜙𝑖

−(𝑎𝑗) or 𝜙𝑖
+(𝑎𝑖)  > 𝜙𝑖

+(𝑎𝑗)  and 𝜙𝑖
−(𝑎𝑖) = 𝜙𝑖

−(𝑎𝑗); 𝑎𝑖P 𝑎𝑗, 

 The  indifference (IND): 

If 𝜙𝑖
+(𝑎𝑖)  = 𝜙𝑖

+(𝑎𝑗) and 𝜙𝑖
−(𝑎𝑖) = 𝜙𝑖

−(𝑎𝑗) ; 𝑎𝑖IND 𝑎𝑗, 

 The incomparability (INC): 

If 𝜙𝑖
+(𝑎𝑖) > 𝜙𝑖

+(𝑎𝑗) and 𝜙𝑖
−(𝑎𝑖)  < 𝜙𝑖

−(𝑎𝑗); or 𝜙𝑖
+(𝑎𝑖)  > 𝜙𝑖

+(𝑎𝑗)  

and 𝜙𝑖
−(𝑎𝑖)  < 𝜙𝑖

−(𝑎𝑗); 𝑎𝑖INC𝑎𝑗. 

 PROMETHEE II proposed the net flow 𝜙 =  𝜙𝑖
+(𝑎𝑖) − 𝜙𝑖

−(𝑎𝑖) to overcome 

the incomparability of alternatives. Two rules can be defined as follows: 

 the  preference (P):  𝑎𝑖P 𝑎𝑗 iff 𝜙 (𝑎𝑖) > 𝜙 (𝑎𝑗); 

 the indifference (IND): 𝑎𝑖 IND 𝑎𝑗 iff 𝜙 (𝑎𝑖) = 𝜙 (𝑎𝑗). 

The FlowSort was proposed to assign a set of n alternatives A to k ordered 

categories 𝐶1, 𝐶2, … , 𝐶𝑘   evaluated according to m criteria G. Each category is 

defined by a set of limiting profiles 𝑅 ={𝑟1, 𝑟2, … , 𝑟𝑘+1} or by a set of k central 

profiles (centroids) for k ordered categories 𝑅̃ ={𝑟̃1, 𝑟̃2, … , 𝑟̃𝑘} defined by the 

DM. So, to avoid conflicts, we note that each category can be defined by a set of 

reference profiles 𝑅∗ ={𝑟1
∗, 𝑟2

∗, …} founded by Nemery and Lamboray (2007). 

For each alternative 𝑎𝑖  for all i ∈ {1, 2, …, n}, let us define a set 𝑅𝑖
∗= 𝑅∗∪{𝑎𝑖}, 

where 𝑎𝑖 is the action to be assigned. 

The assignment of alternatives is deduced from their relative position with 

respect to the reference profiles, in terms of positive, negative and net flows. It 

depends on the simultaneous comparison of the alternative with all the reference 

profiles (Nemery and Lamboray, 2007). The positive, negative and net flows are 

computed as follows by using equation (1): 
 

                                       𝜙𝑅𝑖
∗

+  (x)= 
1

|𝑅𝑖
∗|−1

 ∑ 𝜋(𝑥, 𝑦)𝑦 ∈𝑅𝑖
∗ ,                                     (1)  

 

                                       𝜙𝑅𝑖
∗

−  (x)= 
1

|𝑅𝑖
∗|−1

 ∑ 𝜋(𝑦, 𝑥),𝑦∈ 𝑅𝑖
∗                                      (2) 

 

                                          𝜙𝑅𝑖
∗ (x)= 𝜙𝑅𝑖

∗
+  (x) - 𝜙𝑅𝑖

∗
−  (x),                                        (3) 

 

where |𝑅𝑖
∗| is the number of elements in the set 𝑅𝑖

∗. 
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Three different assignment rules based on the positive, negative and the net 

flows are defined as follows: 
 

                        𝐶𝜙+ (𝑎𝑖) = 𝐶𝐾  if 𝜙𝑅𝑖
∗

+  (𝑟𝑘 ) > 𝜙𝑅𝑖
∗

+  (𝑎𝑖 ) ≥ 𝜙𝑅𝑖
∗

+  (𝑟𝑘+1 ),                 (4) 

 

                        𝐶𝜙− (𝑎𝑖) = 𝐶k  if 𝜙𝑅𝑖
∗

−  (𝑟𝑘 ) ≤ 𝜙𝑅𝑖
∗

−  (𝑎𝑖 ) < 𝜙𝑅𝑖
∗

−  (𝑟𝑘+1 ),                  (5) 

 

                         𝐶𝜙 (𝑎𝑖) = 𝐶𝐾  if 𝜙𝑅𝑖
∗ (𝑟𝑘 ) > 𝜙𝑅𝑖

∗ (𝑎𝑖 ) ≥ 𝜙𝑅𝑖
∗ (𝑟𝑘+1 ).                  (6) 

 

3  Intuitionistic fuzzy set theory 

 

To deal with uncertainty and vagueness, fuzzy set theory (Zadeh, 1965) was 

used as an efficient tool, and has had a great success in innumerable fields. Let X 

denotes a universe of discourse. A fuzzy set A in X is defined as a set of ordered 

pairs: 

A = {<x, 𝜇𝐴 (x)>| x ∈ X},  𝜇𝐴(𝑥) ∈  [0, 1] is the degree 

                                           of belongingness of x in A.                                      (7) 

 

The intuitionistic fuzzy set theory (Atanassov, 1986) is a generalization of the 

fuzzy set theory (Zadeh, 1965). It solves the problem that a non-membership 

degree is not always equal to 1 − 𝜇𝐴 (x) in real life. The IFS theory is 

characterized by assigning a membership degree and a non-membership degree 

to each element. Let a set X be fixed, an intuitionistic fuzzy set (IFS) A in X is 

defined as follows: 

 

                    A= {<x, 𝜇𝐴 (x), 𝜈𝐴(x)>| x ∈ X} , 𝜇𝐴 (𝑥), 𝜈𝐴(𝑥) ∈  [0, 1],              (8) 

 

where 𝜇𝐴(x) and 𝜈𝐴(x) are defined, respectively, as the degree of membership 

and the degree of non-membership of the element x ∈ X, 0 ≤𝜇𝐴 (x) + 𝜈𝐴(x) ≤ 1. 

The fuzzy set (Zadeh, 1965) is defined by A = {<x, 𝜇𝐴 (x)>| x ∈ X} and can be 

defined as an IFS by A = {<x, 𝜇𝐴 (x), 1 − 𝜇𝐴 (x) >| x ∈ X}. For each IFS A in X, 

the degree of hesitancy of x to A is 𝜃𝐴(x) = 1 − 𝜇𝐴 (x) − 𝜈𝐴(x). If 𝜃𝐴(x) = 0, then 

A is reduced to a fuzzy set. 

The IFS is able to describe the data which may involve uncertain information. 

An ill-known quantity may therefore be expressed with an intuitionistic fuzzy 

number (IFN).  Several functions such as trapezoidal (Banerjee, 2012) triangular 

(Li, Nan and Zhang, 2012), interval number (Sengupta and Pal, 2009), among 

others, can be used to explain the intuitionistic fuzzy numbers. The simplest one 

is to present the membership and the non-membership functions by the 

triangular fuzzy numbers (TIFNs). 
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The TIFN (Li, Nan and Zhang, 2012) is represented by the two sets of triplets 

𝐴(𝑇𝐼𝐹𝑁)= {(𝑎1, 𝑎2, 𝑎3); ( 𝑎′1, 𝑎2, 𝑎′3)}, where 𝑎2 is the mean value of the 

intuitionistic fuzzy numbers 𝜇𝐴 (x) and  𝜈𝐴 (x), 𝑎1 and 𝑎3 are, respectively, the 

left and the right boundaries  of 𝜇𝐴 (x), 𝑎′1 and 𝑎′3 are, respectively, the left and 

the right boundaries of 𝜈𝐴 (x),  and 𝑎′1≤ 𝑎1≤ 𝑎2 ≤ 𝑎3 ≤ 𝑎′3. The TIFN 

membership and non-membership are given as follows: 
 

                                 𝜇𝐴(𝑇𝐼𝐹𝑁)
 (x) = {

𝑥−𝑎1

𝑎2−𝑎1
, 𝑓𝑜𝑟 𝑎1 ≤ 𝑥 ≤ 𝑎2

𝑎3−𝑥

𝑎3−𝑎2
, 𝑓𝑜𝑟 𝑎2 ≤ 𝑥 ≤ 𝑎3

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,                         (9)

  

 

                                𝜈𝐴(𝑇𝐼𝐹𝑁)
 (x) = {

𝑎2−𝑥

𝑎2−𝑎′
1

, 𝑓𝑜𝑟 𝑎′
1 ≤ 𝑥 ≤ 𝑎2

𝑥−𝑎2

𝑎′
3−𝑎2

, 𝑓𝑜𝑟 𝑎2 ≤ 𝑥 ≤ 𝑎′
3

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

.                        (10) 

 

In many real-life situations, the information cannot be evaluated exactly in 

numerical values but rather in linguistic variables. The linguistic terms are words 

and sentences of a natural language. The Linguistic Intuitionistic Fuzzy Number 

(LIFN) is a special intuitionistic fuzzy number which can describe the vagueness 

existing in real-life decision-making more easily (Liu and Qin, 2017). The 

linguistic variables have some special transformations forms to IFNs. These may 

include the trapezoidal, triangular, and rectangular forms. The most popular kind 

of IFNs are triangular numbers. We opted for the Gautam, Singh and Singh 

(2016) transformations because of their simplicity and ease of operation. They 

express the linguistic variables as positive TIFNs as shown in Tables 1 and 2. 
 

Table 1: Linguistic variables for the rating 
 

Very Poor (VP) <0, 0, 1; 0, 0, 2> 

Poor (P) <0, 1, 3; 0, 1 ,4> 

Medium Poor (MP) <1, 3, 5; 0.5, 3 ,5.5> 

Fair (F) <3, 5, 7; 2, 5, 8> 

Medium Good (MG) <5, 7, 9; 4.5, 7, 9.5> 

Good (G) <7, 9, 10; 6, 9, 10> 

Very Good (VG) <9, 10, 10; 8, 10, 10> 
 

Source: Gautam, Singh and Singh (2016). 
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Table 2: Linguistic variables for the weight importance of each criterion 
 

Very Low (VL)  <0, 0, 0.1; 0, 0, 0.2> 

Low (L)  <0, 0.1 ,0.3; 0, 0.1, 0.4> 

Medium Low (ML)  <0.1, 0.3, 0.5; 0.05, 0.3, 0.5, 0.5> 

Medium (M)  <0.3, 0.5, 0.7; 0.2, 0.5, 0.8> 

Medium High (MH)  <0.5 ,0.7, 0.9; 0.45, 0.7, 0.95> 

High (H)  <0.7, 0.9, 1; 0.6, 0.9, 1> 

Very High (VH)  <0.9, 1, 1; 0.8, 1, 1> 
 

Source: Gautam, Singh and Singh (2016). 
 

Let us consider 𝐴(𝑇𝐼𝐹𝑁)= {(𝑎1, 𝑎2, 𝑎3); (𝑎′1, 𝑎2, 𝑎′3)} and 𝐵(𝑇𝐼𝐹𝑁)= {(𝑏1, 𝑏2, 𝑏3); 

( 𝑏′1, 𝑏2, 𝑏′3)}. The operations on triangular intuitionistic fuzzy numbers are the 

following: 
𝐴(𝑇𝐼𝐹𝑁) + 𝐵(𝑇𝐼𝐹𝑁) = {(𝑎1+ 𝑏1, 𝑎2+ 𝑏2, 𝑎3+ 𝑏3); (𝑎′1+ 𝑏′1, 𝑎2+ 𝑏2, 𝑎′3+ 𝑏′3)},    (11) 

𝐴(𝑇𝐼𝐹𝑁) − 𝐵(𝑇𝐼𝐹𝑁) = {(𝑎1− 𝑏3, 𝑎2 − 𝑏2, 𝑎3− 𝑏1); (𝑎′1 − 𝑏′3, 𝑎2 − 𝑏2, 𝑎′3 − 𝑏′1)}, (12) 

𝐴(𝑇𝐼𝐹𝑁) * 𝐵(𝑇𝐼𝐹𝑁) ={(𝑎1* 𝑏1, 𝑎2* 𝑏2, 𝑎3* 𝑏3); (𝑎′1* 𝑏′1, 𝑎2* 𝑏2, 𝑎′3* 𝑏′3)}.       (13)  

Let k be a scalar number:  
If k > 0 then k* 𝐴(𝑇𝐼𝐹𝑁)= {(𝑘 ∗ 𝑎1, 𝑘 ∗ 𝑎2, 𝑘 ∗ 𝑎3); (𝑘 ∗ 𝑎′1, 𝑘 ∗ 𝑎2, 𝑘 ∗ 𝑎′3)},     (14) 

If k < 0 then k* 𝐴(𝑇𝐼𝐹𝑁)= {(𝑘 ∗ 𝑎3, 𝑘 ∗ 𝑎2, 𝑘 ∗ 𝑎1); (𝑘 ∗ 𝑎′3, 𝑘 ∗ 𝑎2, 𝑘 ∗ 𝑎′1)}.     (15) 

Gani and Abbas (2014) defined the defuzzification of a triangular 

intuitionistic number to ordinal number as follows: 
 

                                      A= 
(𝑎1+2𝑎2+𝑎3)+(𝑎′

1+2𝑎2+𝑎′3)

8
 .                                    (16) 

 

4  IFS-FlowSort for multicriteria group decision making  
 

Our research aim is to develop an IFS FlowSort method where an ill-known 

quantity is expressed with an intuitionistic fuzzy number. Our proposed 

extension adopts linguistic values as input data to simplify the collection of data. 

Next, we have to transform the linguistic preference rating and the linguistic 

weights to triangular intuitionistic fuzzy numbers (TIFNs). In addition, our 

extension solves the multicriteria group decision making problems (MCGDM).  

It consists in aggregating the individual sorting results in a collective one and 

calculating the personal and the group satisfaction degrees. If there is a low 

satisfaction, it will be necessary to recollect the input data. 

As presented in Figure 1, IFS-FlowSort for an MCGDM algorithm can be 

divided into four phases: (i) the construction of the linguistic evaluation matrix, 

(ii) the implementation of IFS-FlowSort (Remadi and Frikha, 2019) of each 

individual decision maker separately, (iii) the aggregation of the individual 

sorting results in a collective one, (iv) the satisfaction evaluation. 
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Figure 1: The procedure of the IFS-FlowSort method for an MCGDM problem 
 

According to the definitions in Sections 2 and 3, and as presented in Figure 1, 

the implementation of the IFS-FlowSort method for MCGDM is as follows: 

In the first phase, we have to create a linguistic evaluation matrix. To solve 

the sorting of the MCGDM problem, it is necessary to describe:  

A = {𝑎1, 𝑎2, … , 𝑎𝑛} a set of n alternatives. 

G = {𝑔1, 𝑔2, … , 𝑔𝑚} a set of m criteria evaluated by  𝑊𝑔 = {𝑤𝑔1, 𝑤𝑔2, … , 𝑤𝑔𝑚} 

criteria weights. 

C = {𝑐1, 𝑐2, … , 𝑐𝑡} a set of 𝑡 classes. 

D = {𝑑1, 𝑑2, … , 𝑑𝑦} a set of y decision makers (DM) evaluated by λ = {λ1, λ2,  

… , λ𝑦} DM weights. The DM weights are assumed to be crisp numbers. 

𝑋(𝑙) = (𝑥𝑖𝑗(𝑙))𝑛∗𝑚 is the linguistic performance rating for the alternative 𝑎𝑖  (i = 1, 2, 

… , n) on criterion 𝑐𝑗 (j = 1, 2, … , m) according to the DM 𝑑𝑙 (l = 1, 2, … , y). 

The parameter values such as the criteria weights, the DM weights and the 

preference and the indifference degrees are assumed to be unique for all the 

DMs. 

Then, the DMs are also invited to determine the set of ordered categories 

𝐶1 ⊳ 𝐶2⊳ … ⊳ 𝐶𝑡, where 𝐶ℎ ⊳ 𝐶𝑙 for h < l, denote that the category 𝐶ℎ is preferred 

to the category 𝐶𝑙. Each category is defined by one central profile or two reference 
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profiles. Let 𝑅 ={𝑟1, 𝑟2, … , 𝑟𝑡+1} be the set of limiting profiles, where 𝑟ℎ and 𝑟ℎ+1 

are the upper and the lower bounds of 𝐶ℎ, respectively. There are 𝑡 central profiles 

(centroids) for 𝑡 ordered categories 𝑅̃ = {𝑟̃1, 𝑟̃2, … , 𝑟̃𝑡} defined by the DM. When 

there is no distinction between the set of limiting profiles and the set of centroids, 

there are exist the reference profiles 𝑅∗ ={𝑟1
∗, 𝑟2

∗, …}. Let us define the set 𝑅𝑖
∗ =  

= 𝑅∗∪{𝑎𝑖} where 𝑎𝑖 is the action to be assigned (Step 1). 

The second phase is to transform the linguistic performance ratings decisional 

matrix 𝑋(𝑙), the linguistic criterion weights and the linguistic DM weights to 

triangular intuitionistic fuzzy numbers. Table 1 and Table 2 show the linguistic 

scales and the corresponding IFNs according to Gautam, Singh and Singh (2016): 

𝑥𝑖𝑗(𝑙)={(𝑥𝑖𝑗(𝑙)
1 , 𝑥𝑖𝑗(𝑙)

2 , 𝑥𝑖𝑗(𝑙)
3 ); (𝑥𝑖𝑗(𝑙)

′1 , 𝑥𝑖𝑗(𝑙)
2 , 𝑥𝑖𝑗(𝑙)

′3 )}, i = 1, 2, … , n,  

j = 1, 2, … , m, l = 1, 2, … , y.                                                                    (17) 

where 𝑥𝑖𝑗(𝑙)
2  is the mean value of the intuitionistic fuzzy numbers 𝜇 (𝑥𝑖𝑗(𝑙)) and 𝜈 

(𝑥𝑖𝑗(𝑙)), 𝑎1 and 𝑎3 are, respectively, the left and the right boundaries of 𝜇(𝑥𝑖𝑗(𝑙)), 

𝑎′1 and 𝑎′3 are, respectively, the left and the right boundary of 𝜈 (𝑥𝑖𝑗(𝑙)), and 

𝑥𝑖𝑗(𝑙)
′1 ≤ 𝑥𝑖𝑗(𝑙)

1 ≤ 𝑥𝑖𝑗(𝑙)
2  ≤ 𝑥𝑖𝑗(𝑙)

′3  ≤ 𝑥𝑖𝑗(𝑙)
3  (Step 2). 

After that, we should construct and exploit the individual Intuitionistic Fuzzy 

FlowSort procedure: 

The preference degrees 𝜋 (𝐴, 𝐵) of each alternative A over an alternative B 

are computed using the arithmetic operation on triangular intuitionistic fuzzy 

numbers for all the alternatives A, B of 𝑅𝑖
∗ (Step 3). 

𝜋 (A, B) = ∑ 𝑤𝑗 *  𝑃𝑗(A, B),                                                                                      (18) 

𝜋 (A, B) = ∑ 𝑤𝑗 *  𝑃𝑗(𝑓𝑗(A) − 𝑓𝑗(B)),  

where 𝑓𝑗(A) = (𝑎1, 𝑎2, 𝑎3;  𝑎′
1, 𝑎2, 𝑎′

3), 𝑓𝑗(B) =  (𝑏1, 𝑏2, 𝑏3;  𝑏′
1, 𝑏2, 𝑏′

3) and 

𝑤𝑗 = (𝑤1, 𝑤2, 𝑤3;  𝑤′
1, 𝑤2, 𝑤′

3) are triangular intuitionistic fuzzy numbers. 

𝜋 (A, B)= ∑ 𝑤𝑗 *  𝑃𝑗((𝑎1, 𝑎2, 𝑎3;  𝑎′
1, 𝑎2, 𝑎′

3) − (𝑏1, 𝑏2, 𝑏3;  𝑏′
1, 𝑏2, 𝑏′

3)),  

𝜋 (A, B)= ∑ 𝑤𝑗 *  𝑃𝑗(𝑎1 −  𝑏3,  𝑎2 − 𝑏2, 𝑎3 − 𝑏1;  𝑎′
1 − 𝑏′

3,  𝑎2 − 𝑏2, 𝑎′
3 − 𝑏′1 ),  

𝜋 (A, B)= ∑ 𝑤𝑗 *  𝑃𝑗(𝛼1, 𝛼2, 𝛼3; 𝛼′
1, 𝛼2, 𝛼′

3),  

where 𝛼1 = 𝑎1 −  𝑏3, 𝛼2 = 𝑎2 − 𝑏2, 𝛼3 = 𝑎3 − 𝑏1, 𝛼′1 = 𝑎′
1 − 𝑏′

3, 𝛼′3 = 𝑎′
3 − 𝑏′1. 

𝜋 (A, B) = ∑ 𝑤𝑗 * (𝛼1

𝑃𝑗  , 𝛼2

𝑃𝑗 , 𝛼3

𝑃𝑗;  𝛼′1
𝑃𝑗  , 𝛼2

𝑃𝑗 , 𝛼′3

𝑃𝑗),  

𝜋 (A, B) = ∑(𝑤1𝑗𝛼1

𝑃𝑗  , 𝑤2𝑗  𝛼2

𝑃𝑗 , 𝑤3𝑗𝛼3

𝑃𝑗;  𝑤′
1𝑗𝛼′1

𝑃𝑗  , 𝑤2𝑗𝛼2

𝑃𝑗 , 𝑤′
3𝑗𝛼′3

𝑃𝑗),  

𝜋 (A, B) = (∑ 𝑤1𝑗𝛼1

𝑃𝑗
, ∑ 𝑤2𝑗𝛼2

𝑃𝑗
, ∑ 𝑤3𝑗𝛼3

𝑃𝑗
; ∑ 𝑤′

1𝑗𝛼′1
𝑃𝑗

, ∑ 𝑤2𝑗𝛼2

𝑃𝑗
, ∑ 𝑤′

3𝑗𝛼′3

𝑃𝑗). (19) 

Then, each preference degree (A, B) should be defuzzified to transform the 

intuitionistic fuzzy number into a real number. We suggest the use of Gani and 

Abbas (2014) operator given in (12), since it is easier to use and, therefore, the 

use of IFS-FlowSort will be simple (Step 4): 

  𝜋𝑑(A, B) = 
(∑ 𝑤1𝑗𝛼1

𝑃𝑗
+2∗ ∑ 𝑤2𝑗𝛼2

𝑃𝑗
+ ∑ 𝑤3𝑗𝛼3

𝑃𝑗
)+(∑ 𝑤′

1𝑗𝛼′1

𝑃𝑗
+2∗ ∑ 𝑤2𝑗𝛼2

𝑃𝑗
+∑ 𝑤′

3𝑗𝛼′3

𝑃𝑗
)

8
.     (20) 
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The positive, negative and net flows of each alternative A of 𝑅𝑖
∗ are computed 

according to the defuzzified outranking degree (A, B) (Step 5): 

𝜙𝑅𝑖
∗

+  (A) = 
1

|𝑅𝑖
∗|−1

 ∑ 𝜋𝑑(𝐴,  𝐵)𝐵 𝜖𝑅𝑖
∗ ,  (21) 

𝜙𝑅𝑖
∗

−  (A) = 
1

|𝑅𝑖
∗|−1

 ∑ 𝜋𝑑(𝐵,  𝐴),𝐵 𝜖𝑅𝑖
∗    (22) 

𝜙𝑅𝑖
∗ (A) = 𝜙𝑅𝑖

∗
+  (A) − 𝜙𝑅𝑖

∗
−  (A).   (23) 

As in FlowSort, three different assignment rules based on the positive, 

negative and net flows are defined as follows (Step 6): 

𝐶𝜙+ (𝑎𝑖) = 𝐶𝑡  if 𝜙𝑅𝑖
∗

+  (𝑟𝑡 ) > 𝜙𝑅𝑖
∗

+  (𝑎𝑖) ≥ 𝜙𝑅𝑖
∗

+  (𝑟𝑡+1 ),  (24) 

𝐶𝜙− (𝑎𝑖) = 𝐶t  if 𝜙𝑅𝑖
∗

−  (𝑟𝑡 ) ≤ 𝜙𝑅𝑖
∗

−  (𝑎𝑖) < 𝜙𝑅𝑖
∗

−  (𝑟𝑡+1 ),   (25) 

𝐶𝜙 (𝑎𝑖) = 𝐶𝑡  if 𝜙𝑅𝑖
∗ (𝑟𝑡 ) > 𝜙𝑅𝑖

∗ (𝑎𝑖) ≥ 𝜙𝑅𝑖
∗ (𝑟𝑡+1 ).   (26) 

The third phase is the implementation of the group decision making IFS 

FlowSort procedure: 

We calculate the positive, negative and net flows of the group of DMs by 

aggregating the individual flows in collective ones (Step 7): 

𝜙𝑅𝑖
∗

+𝐺 = ∑ λ𝑙
𝑦
𝑙=1 * 𝜙𝑅𝑖

∗
+  (A),  (27) 

𝜙𝑅𝑖
∗

−𝐺 = ∑ λ𝑙
𝑦
𝑙=1 * 𝜙𝑅𝑖

∗
−  (A),  (28) 

𝜙𝑅𝑖
∗

𝐺  = ∑ λ𝑙
𝑦
𝑙=1 * 𝜙𝑅𝑖

∗ (A).  (29) 

Afterwards, we assign alternatives according to the group flows values (Step 8): 

𝐶𝜙+𝐺 (𝑎𝑖) = 𝐶𝑡  if 𝜙𝑅𝑖
∗

+  (𝑟𝑡 ) > 𝜙𝑅𝑖
∗

+𝐺 (𝑎𝑖 ) ≥ 𝜙𝑅𝑖
∗

+  (𝑟𝑡+1 ),  (30) 

𝐶𝜙−𝐺 (𝑎𝑖) = 𝐶𝑡  if 𝜙𝑅𝑖
∗

−  (𝑟𝑡 ) ≤ 𝜙𝑅𝑖
∗

−𝐺 (𝑎𝑖 ) < 𝜙𝑅𝑖
∗

−  (𝑟𝑡+1 ),   (31) 

𝐶𝜙𝐺 (𝑎𝑖) = 𝐶𝑡  if 𝜙𝑅𝑖
∗ (𝑟𝑡 ) > 𝜙𝑅𝑖

∗
𝐺  (𝑎𝑖 ) ≥ 𝜙𝑅𝑖

∗ (𝑟𝑡+1 ).   (32) 

In the last phase, we have to calculate the personal and the group satisfaction 

degrees.  

The personal satisfaction degree is the mean average of the comparison of the 

group sorting results and the individual sorting results (Step 9): 
 

                                                      ζ𝑙 = 
∑ 𝛹𝑙(𝐴𝑖)𝑛

𝑖=1

𝑛
                                              (33) 

 

where 𝛹𝑙(𝐴𝑖) = { 
1 𝑖𝑓 𝑠𝑙(𝐴𝑖) = 𝑆(𝐴𝑖)
0               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,  

where 𝑠𝑙(𝐴𝑖) is the alternative 𝐴𝑖 sorting result of the lth person, 𝑆(𝐴𝑖) is its 

group sorting result. If ζ𝑙 is close to 1, it means that the personal satisfaction is 

high, while if ζ𝑙 is close to 0, there is a low personal satisfaction, and 

consequently it is necessary to recollect data.  

The group satisfaction degree is the weighted average of the personal 

satisfaction degrees (Step 10): 

                                     𝜁𝐺 = ∑ 𝜆𝑙𝜁𝑙
𝑦
𝑙=1 =∑ 𝜆𝑙

∑ 𝛹𝑙(𝐴𝑖)𝑛
𝑖=1

𝑛

𝑦
𝑙=1 ,                              (34) 
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DMs are invited to fix 𝞨 ϵ [0, 1] as a threshold of an acceptable group 

satisfaction level. If 𝜁𝐺  ≥ 𝞨, it means that there is a group agreement; else, it is 

also necessary to recollect data. 
 

5  A numerical example  
 

At this step of our research, we tested the applicability of the proposed  

IFS-FlowSort method for MCGDM through its application to the example of 

Gautam, Singh and Singh (2016). In fact, we considered an MCDM sorting 

problem concerning the assignment of alternatives applied to IFS-TOPSIS 

(Chen, 2015) to illustrate the implementation of our proposed approach.  

In this decision problem, a software company desires to hire a system analyst. 

After a preliminary screening, four candidates {𝐴1, 𝐴2, 𝐴3, 𝐴4} remain for further 

assignment to three categories: C1 is to be selected, C2 is to be discussed and C3 is to 

be rejected. The four potential alternatives can be evaluated by three DMs according 

to five criteria: 𝑔1 (Emotional steadiness), 𝑔2 (Oral communication skill), 𝑔3 

(Personality), 𝑔4 (Past experience), 𝑔5 (Self-confidence). The weights of the five 

criteria and the performance rating (shown in Table 3) are described using the 

linguistic term set 𝑤𝑗= {H, VH, H, VH, MH}. As already mentioned, the weights of 

the DMs are assumed to be a crisp number λ𝑙  = {0.3; 0.5; 0.2}. We suppose that the 

indifference threshold 𝑞𝑗 = 0 and the preference threshold 𝑝𝑗  = 7 for j  = 1, … , 5. 

The limiting profiles of the criteria are given in Table 4.  
 

Table 3: The candidates’ ratings according to the three DMs 
 

Criteria Alternatives 
Decision Makers 

𝐷𝑀1 𝐷𝑀2 𝐷𝑀3 

𝑔1 

𝐴1 MG G MG 

𝐴2 G G MG 

𝐴3 VG G F 

𝐴4 F F F 

𝑔2 

𝐴1 G MG F 

𝐴2 VG VG VG 

𝐴3 MG G VG 

𝐴4 MP P P 

𝑔3 

𝐴1 F G MG 

𝐴2 VG VG VG 

𝐴3 G MG VG 

𝐴4 MG MP P 

𝑔4 

𝐴1 VG G F 

𝐴2 VG VG VG 

𝐴3 G VG MG 

𝐴4 F F F 

𝑔5 

𝐴1 F F F 

𝐴2 VG MG G 

𝐴3 G G MG 

𝐴4 F MP P 
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Table 4: The limiting profiles  
 

 𝑔1 𝑔2 𝑔3 𝑔4 𝑔5 

𝐼𝑅1 10 10 10 10 10 

𝐼𝑅2 6 6 6 6 6 

𝐼𝑅3 4 4 4 4 4 

𝐼𝑅4 0 0 0 0 0 
 

To construct the intuitionistic fuzzy decision matrix, we transformed the 

linguistic performance rating (shown in Table 3) into triangular intuitionistic 

fuzzy number by employing equation (19) (Table 5).  

The transformed intuitionistic fuzzy set weight of each criterion is the following: 

𝑤𝑗 = {<0.7, 0.9, 1; 0.6, 0.9, 1>, <0.9, 1, 1; 0.8, 1, 1>, <0.7, 0.9, 1; 0.6, 0.9, 1>, 

<0.9, 1, 1; 0.8, 1, 1>, <0.5, 0.7, 0.9; 0.45, 0.7, 0.95>}. 
 

Table 5: The IFS Decision matrix 
 

Criteria Alternatives 
Decision Makers 

𝐷𝑀1 𝐷𝑀2 𝐷𝑀3 

𝑔1 

𝐴1 <5, 7, 9; 4.5, 7, 9.5> <7, 9, 10; 6, 9, 10> <5, 7, 9; 4.5, 7, 9.5> 

𝐴2 <7, 9, 10; 6, 9, 10> <7, 9,10; 6, 9, 10> <5, 7, 9; 4.5, 7, 9.5> 

𝐴3 <9, 10, 10; 8, 10, 10> <7, 9, 10; 6, 9, 10> <3, 5, 7; 2, 5, 8> 

𝐴4 <3, 5, 7; 2, 5, 8> <3, 5, 7; 2, 5, 8> <3, 5, 7; 2, 5, 8> 

𝑔2 

𝐴1 <7, 9, 10; 6, 9, 10> <5, 7, 9; 4.5, 7, 9.5> <3, 5, 7; 2, 5, 8> 

𝐴2 <9, 10, 10; 8, 10, 10> <9, 10, 10; 8, 10, 10> <9, 10, 10; 8, 10, 10> 

𝐴3 <5, 7, 9; 4.5, 7, 9.5> <7, 9, 10; 6, 9,10> <9, 10, 10; 8, 10, 10> 

𝐴4 <1, 3, 5; 0.5, 3, 5.5> <0, 1, 3; 0, 1, 4> <0, 1, 3; 0, 1, 4> 

𝑔3 

𝐴1 <3, 5, 7; 2, 5, 8> <7, 9, 10; 6, 9, 10> <5, 7, 9; 4.5, 7, 9.5> 

𝐴2 <9, 10, 10; 8, 10, 10> <9, 10, 10; 8, 10, 10> <9, 10, 10; 8, 10, 10> 

𝐴3 <7, 9, 10; 6, 9, 10> <5, 7, 9; 4.5, 7, 9.5> <9, 10, 10; 8, 10, 10> 

𝐴4 <5, 7, 9; 4.5, 7, 9.5> <1, 3, 5; 0.5, 3, 5.5> <0, 1, 3; 0, 1, 4> 

𝑔4 

𝐴1 <9, 10, 10; 8, 10,10> <7, 9, 10; 6, 9, 10> <3, 5, 7; 2, 5,8> 

𝐴2 <9, 10, 10; 8, 10,10> <9, 10, 10; 8, 10, 10> <9, 10, 10; 8, 10,10> 

𝐴3 <7, 9, 10; 6, 9, 10> <9, 10, 10; 8, 10, 10> <5, 7, 9; 4.5, 7, 9.5> 

𝐴4 <3, 5, 7; 2, 5, 8> <3, 5, 7; 2, 5, 8> <3, 5, 7; 2, 5, 8> 

𝑔5 

𝐴1 <3, 5, 7; 2, 5, 8> <3, 5, 7; 2, 5, 8> <3, 5, 7; 2, 5, 8> 

𝐴2 <9, 10, 10; 8, 10, 10> <5, 7, 9; 4.5, 7, 9.5> <7, 9, 10; 6, 9, 10> 

𝐴3 <7, 9, 10; 6, 9, 10> <7, 9, 10; 6, 9, 10> <5, 7, 9; 4.5, 7, 9.5> 

𝐴4 <3, 5, 7; 2, 5, 8> <1, 3, 5; 0.5, 3, 5.5> <0, 1, 3; 0, 1,4> 

 

We applied individual procedures to each DM evaluation. First, we 

computed the deviation of each pair of alternatives according to each criterion 

using the arithmetic IFS operations to obtain the intuitionistic fuzzy preference 

degrees as mentioned in Step 3. Then, we defuzzified the IF-preference degrees 

to crisp numbers using equation (22). Finally, we calculated the positive, 

negative and net flows values of each DM (see Tables 6-9). 

The individual results show that, according to DM1 and DM2, the candidates 𝐴1, 

𝐴2 and 𝐴3 are assigned to 𝐶1 (to be selected), but candidate 𝐴4 is assigned to 𝐶3  

(to be rejected). As for DM3,  𝐴1  is assigned to 𝐶2 (to be discussed).  
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Table 6: The positive, negative and net flows of DM1 
 

𝜙𝐷𝑀1 𝐼𝑅1 𝐼𝑅2 𝐼𝑅3 𝐼𝑅4 𝐴𝑖 

𝑅1 

𝜙𝑅1

+  2.51 1.51 1.08 0.88 1.52 
𝜙𝑅1

−  0.41 0.73 1.333 2.62 0.6 

𝜙𝑅1
 2.09 0.78 −0.24 −1.73 0.89 

𝑅2 

𝜙𝑅2

+  2.50 1.72 1.39 0.97 2.09 

𝜙𝑅2

−  0.089 0.59 1.29 2.61 0.093 

𝜙𝑅2
 2.41 1.13 0.10 −1.64 1.99 

𝑅3 

𝜙𝑅3

+  2.50 1.58 1.23 0.96 1.77 

𝜙𝑅3

−  0.26 0.623 1.3 2.615 0.29 

𝜙𝑅3
 2.25 0.96 −0.06 −1.66 1.48 

𝑅4 

𝜙𝑅4

+  2.50 1.35 0.8 0.72 0.87 

𝜙𝑅4

−  0.74 0.95 1.43 2.615 1.24 

𝜙𝑅4
 1.76 0.397 −0.63 −1.896 −0.37 

 

Table 7: The positive, negative and net flows of DM2 
 

𝜙𝐷𝑀2 𝐼𝑅1 𝐼𝑅2 𝐼𝑅3 𝐼𝑅4 𝐴𝑖 

𝑅1 

𝜙𝑅1

+  2.50 1.52 1.13 0.88 1.53 
𝜙𝑅1

−  0.37 0.68 1.31 2.615 0.47 

𝜙𝑅1
 2.13 0.84 −0.18 −1.73 1.05 

𝑅2 

𝜙𝑅2

+  2.50 1.66 1.33 0.96 1.96 

𝜙𝑅2

−  0.154 0.60 1.29 2.615 0.17 

𝜙𝑅2
 2.35 1,06 0.035 −1.65 1.79 

𝑅3 

𝜙𝑅3

+  2.50 1.60 1.25 0.97 1.82 

𝜙𝑅3

−  0.23 0.62 1.29 2.615 0.267 

𝜙𝑅3
 2.27 0.98 −0.04 −1.645 1.56 

𝑅4 

𝜙𝑅4

+  2.50 1.33 0.72 0.62 0.67 

𝜙𝑅4

−  0.86 1.16 1.59 2.61 1.73 

𝜙𝑅4
 1.64 0.17 −0.87 −1.99 −1.06 

 
Table 8: The positive, negative and net flows of DM3 

 

𝜙𝐷𝑀3 𝐼𝑅1 𝐼𝑅2 𝐼𝑅3 𝐼𝑅4 𝐴𝑖 

𝑅1 

𝜙𝑅1

+  2.50 1.36 0.84 0.79 0.99 
𝜙𝑅1

−  0.67 0.87 1.37 2.615 1.02 

𝜙𝑅1
 1.83 0.49 −0.53 −1.82 −0.03 

𝑅2 

𝜙𝑅2

+  2.50 1.66 1.32 0.96 1.95 

𝜙𝑅2

−  0.16 0.61 1.29 2.615 0.18 

𝜙𝑅2
 2.34 1.05 0.03 −1.65 1.77 

𝑅3 

𝜙𝑅3

+  2.50 1.54 1.15 0.91 1.60 

𝜙𝑅3

−  0.35 0.68 1.315 2.615 0.46 

𝜙𝑅3
 2.15 0.86 −0.17 −1.70 1.14 

𝑅4 

𝜙𝑅4

+  2.50 1.33 0.74 0.54 0.61 

𝜙𝑅4

−  0.83 1.14 1.58 2.615 1.67 

𝜙𝑅4
 1.67 0.19 −0.85 −2.07 −1.06 
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We aggregate the individual results into a collective one. The group positive, 

negative and net flows are presented in Table 9. The group results show that 

candidates 𝐴1, 𝐴2 and 𝐴3 are assigned to 𝐶1 (to be selected) and candidate 𝐴4 is 

assigned to 𝐶3 (to be rejected). 
 

Table 9: The group of positive, negative and net flows 
 

 
𝜙𝐺  𝐼𝑅1 𝐼𝑅2 𝐼𝑅3 𝐼𝑅4 𝐴𝑖 

𝑅1 

𝜙𝑅1

+  2.50 1.48 1.06 0.86 1.41 

𝜙𝑅1

−  0.44 0.73 1.33 2.615 0.61 

𝜙𝑅1
 2.06 0.75 −0.27 −1.75 0.8 

𝑅2 

𝜙𝑅2

+  2.50 1.68 1.34 0.96 2.00 

𝜙𝑅2

−  0.13 0.60 1.29 2.615 0.15 

𝜙𝑅2
 2.36 1.08 0.05 −1.65 1.85 

𝑅3 

𝜙𝑅3

+  2.50 1.58 1.22 0.95 1.77 

𝜙𝑅3

−  0.26 0.63 1.29 2.615 0.32 

𝜙𝑅3
 2.24 0.95 −0.08 −1.66 1.45 

𝑅4 

𝜙𝑅4

+  2.50 1.34 0.75 0.63 0.72 

𝜙𝑅4

−  0.82 1.09 1.54 2.615 1.57 

𝜙𝑅4
 1.68 0.24 −0.79 −1.98 −0.85 

 

By calculating the personal satisfaction degrees (𝜁1(𝐴𝑖) = 1, 𝜁2(𝐴𝑖) = 1 and 

𝜁3(𝐴𝑖) = 0.75), we can conclude that there is a full satisfaction for the DM1 and 

DM2 and a high satisfaction for DM3. After fixing the threshold of an 

acceptable group satisfaction level to 𝞨 = 0.9, the group satisfaction degree 

(𝜁𝐺  = 0.95) shows an agreement among the group of DMs. 

In order to compare results, the same input data were used and applied to the 

FlowSort, the F-FlowSort, the PROMETHEE (Brans, Mareschal and Vincke, 

1984), the TOPSIS (Chen and Hwang, 1992) and the IFS-TOPSIS (Chen, 2015) 

methods. As can be seen in Table 10, assignments are closely similar except for 

the fourth alternative, when considering the assignment based on the positive 

and negative flows for F-FlowSort. So, the alternative 4 can be unambiguously 

assigned to category 3. IFS-FlowSort can successfully correct this ambiguous 

assignment by using the perfect information given by the IFS values. In addition, 

we have found identical results when applying FlowSort. Also, some 

relationship can be noticed when comparing the results given by the ranking 

methods. In fact, the results given by PROMETHEE (Brans, Mareschal and 

Vincke, 1984), TOPSIS (Chen and Hwang, 1992) and IFS-TOPSIS (Chen, 

2015), and by IFS-FlowSort for MCGDM are almost the same. As it can be seen 

in Figure 2, if we can group alternatives into three ordered categories from the 

best to the worst; the 1st, 2nd and 3rd alternatives are always the most preferred, so 
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it can be logically assigned to the first category, there is no alternative that can 

be middle preferred and the 4th alternative is always the worst one. However, this 

observation cannot be generalized, since many studies are wanted in this area. 

 
Table 10: Comparison with other sorting methods 

 

Scenarios 
FlowSort F-FlowSort IFS-FlowSort-GDM 

𝐾𝜙+ 𝐾𝜙− 𝐾𝛷 𝐾𝜙+ 𝐾𝜙− 𝐾𝛷 𝐾𝜙+ 𝐾𝜙− 𝐾𝛷 

𝐴1 𝐾1 𝐾1 𝐾1 𝐾1 𝐾1 𝐾1 𝐾1 𝐾1 𝐾1 

𝐴2 𝐾1 𝐾1 𝐾1 𝐾1 𝐾1 𝐾1 𝐾1 𝐾1 𝐾1 

𝐴3 𝐾1 𝐾1 𝐾1 𝐾1 𝐾1 𝐾1 𝐾1 𝐾1 𝐾1 

𝐴4 𝐾3 𝐾3 𝐾3 𝐾3 𝐾2 𝐾2 𝐾3 𝐾3 𝐾3 

 

 
 

Figure 2: Comparison with ranking methods 

 
6  Conclusion 

 

The ordinal classification MCDM problem is one of the most important issues in 

management science and operational research. It is the process of structuring and 

sorting decision problems into ordered predefined categories when multiple 

conflicting criteria are deployed. The FlowSort method succeeded in solving this 

issue in a great deal of research. It classified items into ordered categories using 

the limiting and the centroid profiles based on exact values. However, the 

process of decision making is often prone to uncertainty and imprecision as it 

implies human judgement and cognitive thinking. So, the use of crisp values 

becomes inefficient to solve MCDM problems. The concept of intuitionistic 
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fuzzy sets (IFS) achieves a great success to deal with the fuzziness of MCDM 

problems. For that reason, we introduced it and modeled IFS FlowSort. However, 

it is sometimes difficult for DMs to describe their opinions as intuitionistic fuzzy 

information. Thus, in this paper we presented preference ratings as linguistic terms 

and suggested transforming them into triangular intuitionistic fuzzy numbers. In 

addition, this study focused on a group decision making problem where a group of 

individuals collectively shares the responsibility for sorting a set of alternatives. In 

fact, we integrated the MCGDM problem by proposing the FlowSort method. To 

illustrate this extension, a practical example was presented and validated through  

a comparison with other MCDM methods As a result, we can conclude that our 

extension seems coherent in a sorting context and in the uncertainty logic. The 

proposed FlowSort method is simple to process and easy to use, especially for 

decision-makers who are familiar with PROMETHEE. As a future research 

perspective, we can modify the suggested method to solve MCGDM problems 

based on the input aggregation procedure. 
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