PL EN


2015 | 63 | 1 | 117-138
Article title

Sylogistyka Venna i pewna konwencja notacyjna

Content
Title variants
EN
Venn’s Syllogistic and a Certain Notational Convention
Languages of publication
PL
Abstracts
PL
John Venn w Formal Logic (1881) zbudował pewien system sylogistyki, będący jedną z realizacji idei kwantyfikacji orzeczników. Interesującą rekonstrukcję tego systemu zaproponował V.I. Markin (2011). Markin posługuje się pięcioma funktorami pierwotnymi {aa,ai,ia,ii,e}. Wyrażenia elementarne SaaP,SaiP,SiaP,SiiP oraz SeP są czytane odpowiednio: wszelkie S są wszelkimi P, wszelkie S są pewnymi P, pewne S są wszelkimi P, pewne S są pewnymi P oraz żadne S nie są P. Markin podaje aksjomatykę dla tego systemu. Proponuje też reguły translacji jego formuł na język sylogistyki klasycznej, o aksjomatyce Łukasiewicza {SaS, SiS, MaP˄SaM ɛ SaP, MaP ˄ MiS ɛ SiP}oraz reguły translacji odwrotnej. To sformułowanie sylogistyki Venna można uprościć przez przyjęcie konwencji notacyjnej: SP / SPPS SPPS / SP dla ,{a,&}. Proponowana jest nowa aksjomatyka dla sylogistyki Venna z mocnym rozumieniem zdań szczegółowo-twierdzących (S3P). Badane są związki logiczne między sylogistyką Venna (SV) i systemem Łukasiewicza (SL). Zostaje sformułowany system (SI) z mocnym rozumieniem zdań szczegółowo-twierdzących. Podany jest dowód, że systemy SI i SL są równoważne.
EN
John Venn in his Formal Logic (1881) constructed a certain system of syllogistic, which is one of implementations of the idea of the quantification of predicates. An interesting reconstruction of this system was proposed by V.I. Markin (2011). Markin makes use of five primary functors {aa, ai, ia, ii, e}. The elementary expressions SaaP, SaiP, SiaP, SiiP and SeP are respectively read as: all S is all P, all S is some P, some S is all P, some S is some P and no S is any P. Markin gives the axiom system for the system. He also proposes the rules of translation of its formulas into the language of classical syllogistic of Łukasiewicz’s axiom system {SaS, SiS, MaPSaM SaP, MaPMiS SiP} and the rules of reverse translation. This formulation of Venn’s syllogistic can be simplified, including the strong understanding of particular-affirmative sentences (S P) and by adopting the following notational convention: SP / SPPS SPPS / SP for ,{a,&}. A new axiom system for Venn’s syllogistic is proposed here. The logical relations between Venn’s sylogistic (SV) and the Łukasiewicz’s system (SL) are examined. A system (SI) has been formulated with a strong understanding of particular affirmative sentences. The proof that systems SI and SL are equivalent is given.
Year
Volume
63
Issue
1
Pages
117-138
Physical description
Contributors
References
  • DUBAKOV D.V., MARKIN V.I.: Sistema sillogistiki s iskhodnymi konstantami, sootvetstvuyushchimi krugovym diagrammam, „Trudy nauchno-issledovatel’skogo seminara Logicheskogotsentra Instituta filosofii RAN”, Vyp. XVIII, Moskva 2007.
  • ŁUKASIEWICZ Jan: Elementy logiki matematycznej, skrypt autoryzowany (opracowany przez M. Presburgera), Warszawa 1929 [Reprint wydany przez Wydawnictwo Naukowe UAM – Poznań 2008].
  • MARKIN V.I., Formal’nyye rekonstruktsii sillogistiki Venna, „Vestnik Moskoskogo Universiteta”, Ser. 7. Filosofiya 1 (2011), s. 63-73.
  • VENN John: Symbolic logic, London: Macmillan and Co. 1881.
Document Type
Publication order reference
Identifiers
ISSN
0035-7685
YADDA identifier
bwmeta1.element.desklight-028d7fce-cd67-4fd2-8cde-792437c4dc50
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.