PL EN


2020 | 1 (55) | 38-59
Article title

Pick up plan in the case of a shuttle racks warehouse – an optimization approach

Authors
Content
Title variants
PL
Plan pobrań w przypadku magazynu typu shuttle – podejście optymalizacyjne
Languages of publication
EN
Abstracts
EN
The shuttle racks system is dedicated to storing fast-moving goods on homogeneous pallets, while ensuring high efficiency in the use of storage space. The radioshuttle system consist of shuttle channels and a remote controlled transfer trolley. The research problem considered scientifically is to develop the tools to plan collecting products from the location of shuttle racks that guarantee a minimum number of blockages. The linear programming model ensures that the goods are picked up from the shuttle location which minimizes the number of blockages or completely eliminates them. The main aim is to present a method and an algorithm of the shuttle racks system that will plan storage location before storing goods on the racks based on backorders. As a result, goods are located lengthwise in the shuttle tunnel according to the order in linear, discrete programming models. The work presents the model and verifies the basic characteristics of the problems analysed and the solution obtained.
PL
System regałów przepływowych typu shuttle dedykowany jest do składowania szybko rotujących towarów na jednorodnych paletach, przy jednoczesnym zapewnieniu wysokiej efektywności wykorzystania przestrzeni magazynowej. System radioshuttle składa się z kanałów shuttle i zdalnie sterowanego wózka transportowego. Rozpatrywanym naukowo problemem badawczym jest opracowanie narzędzi, których rezultatem będzie plan odbioru produktów z lokalizacji regałów przepływowych typu shuttle, gwarantujących minimalną liczbę blokad towaru. Model programowania liniowego zapewnia pobieranie towarów z miejsc składowania minimalizujących liczbę blokad lub całkowicie je eliminujących. Głównym celem artykułu jest przedstawienie metody i algorytmu systemu regałów przepływowych typu shuttle, który pozwoli zaplanować lokalizację przed składowaniem towarów w regałach, bazując na zamówieniach. W pracy przedstawiono model i zweryfikowano podstawową charakterystykę analizowanych problemów oraz otrzymane rozwiązanie.
Year
Issue
Pages
38-59
Physical description
References
  • Bekker, J. (2013). Multi-objective buffer space allocation with the cross-entropy method. International Journal of Simulation Modelling, 12(1), 50-61.
  • Berlec, T., Kusar, J., Zerovnik, J., and Starbek, M. (2014). Optimization of a product batch quantity. Strojniski vestnik – Journal of Mechanical Engineering, 60(1), 35-42.
  • Carlo, H. J., and Vis, I. F. A. (2012). Sequencing dynamic storage systems with multiple lifts and shut- tles. International Journal of Production Economics, 140(2), 844-853.
  • Dotoli, M., and Fanti, M. P. (2005). A coloured petri net model for automated storage and retrieval systems serviced by rail-guided vehicles: A control perspective. International Journal Computer Integrated Manufacturing, 18(2-3), 122-136.
  • Ekren, B. Y. (2016). Graph-based solution for performance evaluation of shuttle-based storage and retriev- al system. International Journal of Production Research. doi: 10.1080/ 00207543.2016.1203076
  • Erkan, T. E., and Can, G. F. (2014). Selecting the best warehouse data collecting system by using AHP and FAHP methods. Technical Gazette, 21(1), 87-93.
  • Ekren, B. Y., Heragu, S. S., Krishnamurthy, A., and Malmborg Charles, J. (2010). Simulation based experimental design to identify factors affecting performance of AVS/RS. Computer & Industrial Engineering, 58(1), 175-185.
  • Fukunari, M., and Malmborg, C. J. (2008). An efficient cycle time model for autonomous vehicle storage and retrieval systems. International Journal of Production Research, 46(12), 3167-3184.
  • Giordano, V., Zhang, J. B., Naso, D., and Lewis, F. (2008). Integrated supervisory and operational control of a warehouse with a matrix-based approach. IEEE Transactions on Automation Scien- ce and Engineering, 5(1), 53-70. doi:10.1109/TASE.2007.891472
  • He, S. J., and Luo, J. (2009). Deadlock control of autonomous vehicle storage and retrieval systems via coloured timed petri nets and digraph tools. International Journal of Production Research, 47(12), 3253-3263.
  • Kłodawski, M. (2014). Problem przydziału artykułów do lokacji w funkcji minimalizacji kosztów obiektu logistycznego. Logistyka, (4).
  • Klodawski, M., Jachimowski, R., Jacyna-Golda, I., and Izdebski, M. (2018). Simulation analysis of or- der picking efficiency with congestion situations. International Journal of Simulation Modelling, 17(3), 431-443.
  • Krishnamurthy, A., Roy, D., Heragu, S.S., Charles, J. M. (2010). Blocking effects on performance of warehouse systems with autonomous vehicles, Progress in Material Handling Research.
  • Lerher, T. (2013). Modern automation in warehousing by using the shuttle-based technology. In D. Arent, and M. Freebush (Eds.), Automation systems of the 21st Century: New technologies, applications and impacts on the environment & industrial processes (pp. 51-86). New York: Nova Science Publishers.
  • Lerher, T., Ekren, B. Y., Banu, Y., and Sari, Z. (2015). Simulation analysis of shuttle based storage and retrieval systems. International Journal of Simulation Modelling, 14, 48-59. doi: 10.2507/ IJSIMM14(1)5.281
  • Lerher, T., Ekren, B. Y., Dukic, G., and Rosi, B. (2015). Travel time model for shuttle-based storage and retrieval systems. The International Journal of Advanced Manufacturing Technology, 78(9-12), 1705-1725. doi: 10.10 07/s0 0170-014-6726-2
  • Lerher, T., Edl, M., and Rosi, B. (2014). Energy efficiency model for the mini-load automated storage and retrieval systems. International Journal of Advanced Manufacturing Technology, 70(1-4), 97-115.
  • Le-Anh, T., and De Koster, M. B. M. (2006). A review of design and control of automated guided vehi- cle systems. European Journal of Operational Research, 171(1), 1-23.
  • Li, Z., NaiQi, W., and MengChu, Z. (2012). Deadlock control of automated manufacturing systems based on petri nets – a literature review. IEEE Transactions on Systems, 42(4), 437-462.
  • Lienert, T., and Fottner, J. (2017). No more deadlocks – applying the time window routing method to shuttle system. Proceedings 31st European Conference on Modelling and Simulation.
  • Liu, T., Xu, X., Qin, H., and Lim, A. (2015). Travel time analysis of the dual command cycle in the split-platform AS/RS with I/O dwell point policy. Flexible Services and Manufacturing Journal, 28(3), 442-460.
  • Malmborg, C. J. (2002). Conceptualizing tools for autonomous vehicle storage and retrieval systems. International Journal of Production Research, 40(8), 1807-1822.
  • Malmborg, C. J. (2003). Interleaving dynamics in autonomous vehicle storage and retrieval systems. International Journal of Production Research, 41(5), 1057-1069.
  • Marchet, G., Melacini, M., Perotti, S., and Tappia, E. (2013). Development of a framework for the design of autonomous vehicle storage and retrieval systems. International Journal of Production Research, 51(14), 4365-4387.
  • Marchet, G., Melacini, M., Perotti, S., and Tappia, E. (2012). Analytical model to estimate performanc- es of autonomous vehicle storage and retrieval systems for product totes. International Journal of Production Research, 50(24), 7134-7148.
  • Roodbergen, K. J., and Vis, I. F. A. (2009). A survey of literature on automated storage and retrieval systems. European Journal of Operational Research, 194(2), 343-362.
  • Smew, W., Young, P., and Geraghty, J. (2013). Supply chain analysis using simulation, Gaussian pro- cess modelling and optimisation, International Journal of Simulation Modelling, 12(3), 178-189.
  • Vasili, M. R., Tang, S. H., Homayouni, S. M., and Ismail, N. (2008). A statistical model for expected cycle time of Sp-As/Rs: An application of Monte Carlo simulation. Application of Artificial Intel- ligence, 22(7-8), 824-840.
  • Viswanadham, N., Narahari, Y., Timothy, and Johnson L. (1990). Deadlock prevention and deadlock avoidance in flexible manufacturing systems using petri net models. IEEE Transactions on Robot- ic and Automation, 6(6), 713-723.
  • Wang, Y., Mou, S., and Wu, Y. (2015). Task scheduling for multi-tier shuttle warehousing systems. International Journal of Production Research. 53(19), 5884-5895. doi: 10.1080/00207543. 2015.1012604
  • Ya-Hong, H., Ying Huang, S., Chen, C., Hsu, W.-J., Toh, A. C., Loh, C. K., and Song, T. (2005). Travel time analysis of a new automated storage and retrieval system. Computers & Operation Research, 3(6), 1515-1544.
  • Zizzi, D. V. (2000). What’s new in the equipment field. International Material Handling Research Col- loquium, Material Handling.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.desklight-03e86e72-0e71-4626-9a8c-541d84dfe85b
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.