Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


2016 | 3 (53) | 87-101

Article title

Badanie wpływu indeksów zmienności na zmiany współzależności pomiędzy wybranymi rynkami finansowymi


Title variants

An influence analysis of volatility indices on interdependence changes between selected financial markets

Languages of publication



The study of interdependence and the strength of the relationship between finan-cial time series is a quite important area in the financial literature. Hence we discussed the relationships between the main stock indices. The multivariate distributions of returns we modelled basing on copula functions approach. In order to obtain some dynamics of multi-variate distributions we applied the hidden Markov chain. Additionally we assumed that the transition matrix of the Markov chain was dependent on some exogenous variables. The study shows that the volatility indices VIX and VSTOXX which were taken as exogenous variables improved model efficiency.



  • Aloy M., De Truchis G., Dufrénot G., Keddad B., 2014, Shift-volatility transmission in east asian equity markets: New indicators, Market Microstructure and Nonlinear Dynamics, s. 273-291.
  • Boudt K., Danielsson J., Koopman S.J., Lucas A., 2012, Regime switches in volatility and correlation of financial institutions, Technical Report, Working Paper Research, no. 227, National Bank of Belgium, Brussels.
  • Chollete L., Heinen A., Valdesogo A., 2009, Modeling international financial returns with a multi-variate regime switching Copula, Journal of Financial Econometrics, 7 (4), s. 437-480.
  • Dufrénot G., Damette O., Frouté P., 2014, Anticipated macroeconomic fundamentals, sovereign spreads and regime-switching: The case of the euro area, Market Microstructure and Nonlinear Dynamics, s. 205-234.
  • Engle R.F., 2002, Dynamic conditional correlation: A Simple class of multivariate generalized auto-regressive conditional heteroskedasticity models, Journal of Business and Economic Statistics, 20 (3), s. 339-350.
  • Feder-Sempach E., 2012, Rynki giełdowe i alternatywne systemy obrotu w krajach członkowskich Unii Europejskiej, Acta Universtatis Lodziensis, nr 264, s. 81-94.
  • Filardo A.J., 1994, Business-cycle phases and their transitional dynamics, Journal of Business and Economic Statistics 12 (3), s. 299-308.
  • Forbes K., Rigobon R., 2002, No contagion, only interpedence: Measuring stock market comove-ments, The Journal of Finance, 10 (5), s. 2223-2261.
  • Hamilton J.D., 1990, Analysis of time series subject to changes in regime, Journal of Econometrics, 45 (1-2), s. 39-70.
  • Hamilton J.D.,1994, Time Series Analysis, Princeton University Press, Princeton.
  • Jondeau E., Rockinger M., 2006, The Copula-GARCH model of conditional dependencies: An international stock market application, Journal of International Money and Finance, 25 (5), s. 827-853.
  • Kenourgios D., Samitas A., Paltalidis N., 2011, Financial crises and stock market contagion in a multivariate time-varying asymmetric framework, Journal of International Financial Markets, In-stitutions and Money, 21 (1), s. 92-106.
  • Kim C.J., Piger, J., Startz, R., 2008, Estimation of Markov regime-switching regression models with endogenous switching, Journal of Econometrics 143 (2), s. 263-273.
  • Longin F., Solnik B., 1995, Is the correlation in international equity returns constant: 1960-1990?, Journal of International Money and Finance, 14 (1), s. 3-26.
  • Markwat T., Kole E., van Dijk D., 2009, Contagion as a domino effect in financial markets, Journal of Banking & Finance, 33 (11), s. 1996-2012.
  • Patton A.J., 2006, Modelling asymmetric exchange rate dependence, International Economic Review, 47 (2), s. 527-556.
  • Patton A.J., 2009, Copula-based models for financial time series, Handbook of Financial Time Series, s. 767-785.
  • Rodriguez J.C., 2007, Measuring financial contagion: A Copula approach, Journal of Empirical Finance, 14 (3), s. 401-23.
  • Tse Y.K., Tsui A.K.C., 2002, A multivariate generalized autoregressive conditional heteroscedastici-ty model with time-varying correlations, Journal of Business and Economic Statistics, 20 (3), s. 351-362.
  • Vuong Q.H., 1989, Likelihood ratio tests for model selection and non-nested hypotheses, Economet-rica, 57 (2), s. 307-333.

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.