Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2022 | 3 | 63-72

Article title

Analiza możliwości zastosowania systemów obliczeniowych dużej skali (HPC) do tworzenia aplikacji VR wykorzystywanych w kształceniu ustawicznym

Selected contents from this journal

Title variants

Languages of publication

PL

Abstracts

EN
Analysis of the possibility of using High Performance Computing (HPC) to create VR content used in lifelong learning

Year

Issue

3

Pages

63-72

Physical description

Dates

printed
2022-09-30

Contributors

  • Główny Instytut Górnictwa
  • Główny Instytut Górnictwa

References

  • Bernal I.F.M., Lozano-Ramírez N.E., Cortés J.M.P., Valdivia S., Muñoz R., Aragón J., García R., & Hernández G. (2022), An Immersive Virtual Reality Training Game for Power Substations Evaluated in Terms of Usability and Engagement. Applied Sciences (Switzerland), 12(2). Scopus. https://doi.org/10.3390/app12020711.
  • Borsci S., Lawson G., Broome S. (2015), Empirical evidence, evaluation criteria and challenges for the effectiveness of virtual and mixed reality tools for training operators of car service maintenance. Computers in Industry, 67, 17–26. https://doi.org/10.1016/j. compind.2014.12.002.
  • Buttussi F., Chittaro L. (2018), Effects of Different Types of Virtual Reality Display on Presence and Learning in a Safety Training Scenario. IEEE Transactions on Visualization and Computer Graphics, 24(2), 1063–1076. https://doi.org/10.1109/TVCG.2017.2653117.
  • Chirico A., Maiorano P., Indovina P., Milanese C., Giordano G. ., Alivernini F., Iodice G., Gallo L., De Pietro G., Lucidi F., & others. (2020), Virtual reality and music therapy as distraction interventions to alleviate anxiety and improve mood states in breast cancer patients during chemotherapy. Journal of cellular physiology, 235(6), 5353–5362.
  • Chittaro L., Corbett C.L., McLean G.A., & Zangrando N. (2018), Safety knowledge transfer through mobile virtual reality: A study of aviation life preserver donning. Safety Science, 102, 159–168. https://doi.org/10.1016/j.ssci.2017.10.012.
  • Cruz-Neira C., Sandin D.J., DeFanti T.A., Kenyon R.V., & Hart J.C. (1992), The CAVE: Audio visual experience automatic virtual environment. Communications of the ACM, 35(6), 64–72. https://doi.org/10.1145/129888.129892.
  • Davis R.L. (2009), Exploring possibilities: Virtual reality in nursing research. Research and theory for nursing practice, 23(2), 133–147.
  • Delgado J.M.D., Oyedele L., Demian P., & Beach T. (2020), A research agenda for augmented and virtual reality in architecture, engineering and construction. Advanced Engineering
  • Informatics, 45, 101122.
  • Grabowski A. (2021), Practical skills training in enclosure fires: An experimental study with cadets and firefighters using CAVE and HMD-based virtual training simulators. Fire Safety Journal, 125, 103440. https://doi.org/10.1016/j.firesaf.2021.103440.
  • Gzik M., Wodarski P., Joszko K., Stachowiak E. Bieniek A. (2013), Przykład implementacji systemów trakingowych oraz sytemu Cave w procesach rehabilitacyjnych dzieci. Aktualne Problemy Biomechaniki Zeszyty naukowe Katedry Biomechatroniki.
  • Hummel M., & Kooten K. van. (2019), Leveraging nvidia omniverse for in situ visualization. International Conference on High Performance Computing, 634–642.
  • Kasurinen J. (2017), Usability issues of virtual reality learning simulator in healthcare and cybersecurity. Procedia computer science, 119, 341–349.
  • Lebiedz J., Wiszniewski B. (2021), CAVE applications: From craft manufacturing to product line engineering. Proceedings of the 27th ACM Symposium on Virtual Reality Software and Technology, 1–2. https://doi.org/10.1145/3489849.3489948.
  • Leng J. (2001), Scientific examples of Virtual Reality and visualization applications. UK High Performance Computing, 1–13.
  • Lv Z. (2020), Virtual reality in the context of Internet of Things. Neural Computing and applications, 32(13), 9593–9602.
  • Łagosz S., Kaźmierczak K., Sobczak D., & Urbanek A. (2022), Metoda tworzenia scenariuszy szkoleń górniczych w wirtualnej rzeczywistości, w oparciu o faktycznie zaistniałe zdarzenia wypadkowe. Edukacja ustawiczna dorosłych, 2/2022.
  • Łagosz S., Litwa P., Kaźmierczak K. (2021), SENSE VR – creating complex training scenarios for virtual reality. The Fifth International Symposium on Mine Safety Science and Engineering (ISMSSE2021).
  • Moscoso C., Nazari M., & Matusiak B.S. (2022), Stereoscopic Images and Virtual Reality techniques in daylighting research: A method-comparison study. Building and Environment, 214, 108962.
  • Mystakidis S. (2022), Metaverse. Encyclopedia, 2(1), 486–497.
  • Nasyrov R., Excell P. (2020), Creation of Interactive Virtual Reality Scenarios as a Training and Education Tool (s. 353–369). https://doi.org/10.1007/978-3-030-42097-0_19.
  • Serafin S., Nordahl R., Erkut C., Geronazzo M., Avanzini F., & de Götzen, A. (2015), Sonic interaction in virtual environments. 2015 IEEE 2nd VR Workshop on Sonic Interactions for Virtual Environments (SIVE), 1–2.
  • Solmaz S., Van Gerven T. (2022), Interactive CFD simulations with virtual reality to support learning in mixing. Computers & Chemical Engineering, 156, 107570.
  • Stępnikowski A.W. (2021), Virtual Reality learning retention in education and trainings. Edukacja Ustawiczna Dorosłych, 115(4), 55–61.
  • Technical University of Ostrava, IT4Innovations. (2022), Visualization and Virtual Reality Labs. IT4Innovations. https://www.it4i.cz/en/infrastructure/visualization-and-virtual-reality-labs

Document Type

Publication order reference

Identifiers

ISSN
1507-6563
EISSN
2391-8020

YADDA identifier

bwmeta1.element.desklight-06f109df-b79a-4eba-8768-227a9a66dd12
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.