Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2013 | 22 | 4 | 375–387

Article title

Identity, many-valuedness and referentiality

Title variants

Languages of publication

EN

Abstracts

In the paper * we discuss a distinctive versatility of the non-Fregean approach to the sentential identity. We present many-valued and referential counterparts of the systems of SCI, the sentential calculus with identity, including Suszko’s logical valuation programme as applied to many-valued logics. The similarity of different constructions: many-valued, referential and mixed, leads us to the conviction of the universality of the non-Fregean paradigm of sentential identity as distinguished from the equivalence, cf. [9].

Year

Volume

22

Issue

4

Pages

375–387

Physical description

Dates

online
2013-08-29
issued
2013-12-01

Contributors

  • Department of Logic, University of Łódź, Łódź, Poland

References

  • Bloom, S.L., “A completeness theorem for theories of kind W”, Studia Logica 27 (1971): 43–55. DOI: 10.1007/BF02282544
  • Bloom, S.L., and D.J. Brown, “Classical abstract logics”, Dissertationes Matemathicae CII (1973): 43–52.
  • Malinowski, G., “Classical characterization of n-valued Łukasiewicz calculi”, Reports on Mathematical Logic 9 (1977): 41-43.
  • Malinowski, G., “Identyczność i wielowartościowość”, pages 107–115 in Identyczność znaku czy znak identyczności?, J. Golińska-Pilarek and A. Wójtowicz (eds.), Wydawnictwa Uniwersytetu Warszawskiego, Warszawa, 2012.
  • Malinowski, G., “Many-valued referential matrices”, Bulletin of the Section of Logic 24/3 (1995): 140–146.
  • Malinowski, G., “Modes of many-valuedness”, pages 159–198 in Truth in Perspective. Recent Issues in Logic, Representation and Ontology, C. Martinez, U. Rivas and L. Villegas-Forero (eds.), Ashgate, 1998.
  • Malinowski, G., “Referentiality and matrix semantics”, Studia Logica 97, 2 (2011): 297-312. DOI: 10.1007/s11225-011-9307-5
  • Rosser, J.B., and A.R. Turquette, Many-valued Logics, North-Holland, Amsterdam, 1952.
  • Suszko, R., “Abolition of the Fregean axiom”, pages 169–239 in: Logic Colloquium. Symposium on Logic held at Boston, R. Parikh (ed.), Lecture Notes in Mathematics, vol. 453, 1972. DOI: 10.1007/BFb0064874
  • Suszko, R., “Remarks on Łukasiewicz’s three-valued logic”, Bulletin of the Section of Logic 4, 3 (1975): 87-90.
  • Wójcicki, R., Theory of Logical Calculi. Basic Theory of Consequence Operations, Synthese Library, 199, Kluwer Academic Publishers, Dordrecht, 1988.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.desklight-08cad10c-c5f5-43a9-ac10-761838386b8d
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.