Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2019 | 3 | 253-263

Article title

Cardiovascular system adaptability to exercise according to morphological, temporal, spectral and correlation analysis of oscillograms

Content

Title variants

Languages of publication

EN

Abstracts

Background. Diseases of the cardiovascular system (CVS) are among the most common diseases of humankind (WHO). Monitoring of blood pressure (BP) is an accessible method for evaluating global hemodynamic processes. The functional reserves of the circulatory system are traditionally determined by the use of functional loading trials and tests. Objectives. The aim of the study is to enhance the information collected during the blood pressure measurement process by studying the levels of adaptation of the CVS to physical activity with morphological, temporal, spectral and correlation analyses of arterial oscillography (AO). Material and methods. In 178 healthy individuals aged 18–20 years, arterial oscillograms were recorded during blood pressure measurement and correlations of the functional reserve of the cardiovascular system at various stages of adaptation to a Ruffier test were investigated. Results. The proposed methods of AO analysis significantly increase the informativeness of the procedure for blood pressure measurement, provide an opportunity to conduct a visual analysis of AOs and to assess the state of the cardiovascular system, its reserve capabilities and its ways of adapting to shoulder compression at rest, after physical load and in the process of recovery. Conclusions. Using the information technologies proposed by the authors of the morphological, temporal, spectral and correlation analysis of arterial oscillograms, their evaluation and clinical interpretation significantly increase the informativeness of the blood pressure measuring process. They can be used for early detection of pre-morbid conditions and functional blood circulation reserves, which will help the physician to more effectively plan a preventative, diagnostic and therapeutic process.

References

  • Вакуленко ДВ. Інформаційна система морфологічного, часового, частотного та кореляційного аналізу артеріальних осцилограм у фізичній реабілітації: монографія. Тернопіль: ТДМУ; 2015. (in Ukrainian).
  • Mercedes R. Carnethon. Physical activity and cardiovascular disease: how much is enough? Am J Lifestyle Med 2009; 3(1 Suppl.): 44S––49S, doi: 10.1177/1559827609332737.
  • Fletcher GF, Ades PA, Kligfield P, et al. Exercise standards for testing and training: a scientific statement from the American Heart Association.Circulation 2013; 128(8): 873–934, doi: 10.1161/CIR.0b013e31829b5b44.
  • Амосов НМ, Бендет ЯА. Физическая активность и сердце. 3rd ed. Киев: Здоровья; 1989 (in Russian).
  • Лущик УБ, Новіцький ВВ. Обґрунтування потреби інноваційних медичних технологій у сучасних інформаційних програмних носіях на прикладі технологій діагностики та корекції серцево-судинної патології. Запорожский медицинский журнал 2013;76(1): 97–100 (in Ukrainian).
  • Heart rate variability. Standards of measurement, physioligical interpretation and clinical use. Circulation 1996; 93: 1043–1065.
  • Баевский РМ, Берсенева АП. Оценка адаптационных возможностей организма и риск развития заболеваний. Москва:Медицина; 1997 (in Russian).
  • Fletcher GF, Ades PA, Kligfield P, et al. Exercise standards for testing and training: a scientific statement from the American Heart Association. Circulation 2013; 128(8): 873–934, doi: 10.1161/CIR.0b013e31829b5b44.
  • Nirmalan M, Dark PM. Broader applications of arterial pressure wave form analysis. Continuing Education in Anaesthesia Critical Care & Pain 2014; 14(6): 285–290.
  • Moxham IM. Understanding arterial pressure waveform. Southern African Journal of Anaesthesia and Analgesia 2003; 9(1): 40–42, doi:10.1080/22201173.2003.10872991.
  • Caro CG, Pedley TJ, Schroter RC, et al. The mechanics of the circulation. 2nd ed. London: Cambridge University Press; 2012.
  • Tartiere JM, Tabet JY, Logeart D, et al. Noninvasively determined radial dP/dt is a predictor of mortality in patients with heart failure.Am Heart J 2008; 155(4): 758–763.
  • Goldberger AL, Stein PK. Evaluation of heart rate variability. UpToDate [cited 02.09.2018]. Available from URL: https://www.uptodate.com/contents/evaluation-of-heart-rate-variability.
  • Romano SM, Pistolesi M. Assessment of cardiac output from systemic arterial pressure in humans. Crit Care Med Aug 2002; 30(8):1834–1841.
  • Hamilton MA, Cecconi M, Rhodes A. A systematic review and meta-analysis on the use of preemptive hemodynamic intervention to improve postoperative outcomes in moderate and high-risk surgical patients. Anesth Analgesia Jun 2011; 112(6): 1392–1402.
  • Ekelhof S. The genesis of the Wheatstone bridge. Eng Sci Educ J February 2001; 10(1): 37–40.
  • Warner HR, Swan SH, Connolly DC, et al. Quantitation of beat-to-beat changes in stroke volume from the aortic pulse contour in man.J Appl Physiology 1953; 5: 495–507.
  • Langewouters GJ, Wesseling KH, Goedhard WJ. The static elastic properties of 45 human thoracic and 20 abdominal aortas in vitro and the parameters of a new model. J Biomech 1984; 17(6): 425–435.
  • Chamos C, Vele L, Hamilton M, et al. Less invasive methods of advanced hemodynamic monitoring: principles, devices, and their role in the perioperative hemodynamic optimization. Perioper Med (Lond) 2013; 2(1): 19, doi: 10.1186/2047-0525-2-19.
  • Martsenyuk V, Vakulenko D, Vakulenko L, et al. Information system of arterial oscillograph for primary diagnostics of cardiovasculardiseases. 17th International Conference, CISIM 2018; 2018 September 27–29; Olomouc, Czech Republic. New York: Springer; 2018:46–56, doi: 10.1007/978-3-319-99954-8_5.
  • de Fátima Marin H, Massad E, Guiterre MA, et al. eds. Global health informatics. How Information technology can change our lives in a globalized world. Academic Press; 2016.
  • Shachak A, Borycki E, Shmuel P. ReisHealth Professionals’ Education in the Age of clinical information systems, mobile computing and social networks. Academic Press; 2017.
  • Покровский АВ. Клиническая ангиология. Москва: Медицина; 1979 (in Russian).
  • Смирнов ИВ, Старшов АМ. Функциональная диагностика. ЭКГ, реография, спирография. Москва: Эксмо; 2008 (in Russian).
  • Яруллин ХХ. Клиническая реоэнцефалография. Москва: Медицина; 1983 (in Russian).
  • Thiele RH, Durieux ME. Arterial waveform analysis for the anesthesiologist: past, present, and future concepts. Anesth Analg 2011;113(4): 766–776.
  • Esper SA, Pinsky MR. Arterial waveform analysis. Best Pract Res Clin Anaesthesiol 2014; 28(4): 363–380.
  • Shah SA, Kambur T, Chan C, et al. Relation of short-term heart rate variability to incident heart failure (from the Multi-Ethnic Study ofAtherosclerosis). Am J Cardiol 2013; 112(4): 533–540.
  • Chantler PD, Lakatta EG, Najjar SS. Arterial-ventricular coupling: mechanistic insights into cardiovascular performance at rest and during exercise. J Appl Physiol 2008; 105: 1342–1351.
  • Бабунц ИВ, Мириджанян ЗМ, Машаех ЮА. Азбука анализа вариабельности сердечного ритма [E-book]. Ставрополь; 2002 (in Russian).
  • Lombardi F, Stein PK. Origin of heart rate variability and turbulence: an appraisal of autonomic modulation of cardiovascular function.Front Physiol 2011; 2: 95, doi: 10.3389/fphys.2011.00095.
  • Sassi R, Cerutti S, Lombardi F, et al. Advances in heart rate variability signal analysis: joint position statement by the e-Cardiology ESC Working Group and the European Heart Rhythm Association co-endorsed by the Asia Pacific Heart Rhythm Society. Europace 2015;17(9): 1341–1353, doi: 10.1093/europace/euv015.
  • Яблучанский НИ, Мартыненко АВ. Вариабельность сердечного ритма в помощь практическому врачу. Для настоящих врачей. Харьков: [б. в.]; 2010 (in Russian).
  • Klaus Forstner, inventor. Microlife Intellectual Property Gmbh, assignee. System and method for processing and presentation of arrhythmia information in the detection and treatment of arrhythmias. US 7907996 B2 (Patent) 2011 March. Available from URL: https://patents.justia.com/inventor/klaus-forstner.
  • Goss CF, Miller EB. Dynamic Metrics of Heart Rate Variability 2013; 1–4. arXiv:1308.6018. Bibcode:2013arXiv1308.6018G. Availablefrom URL: https://arxiv.org/abs/1308.6018.
  • Takahashi N, Kuriyama A, Kanazawa H, et al. Validity of spectral analysis based on heart rate variability from 1-minute or less ECGrecordings. Pacing Clin Electrophysiol 2017; 40(9): 1004–1009, doi: 10.1111/pace.13138
  • Winters R, Winters A, Amedee RG. Statistics: a brief overview. Ochsner J 2010; 10: 213–216.
  • Lee Rodgers J, Nicewander WA, Thirteen ways to look at the correlation coefficient. Am Stat 1988; 42(1): 59–66.
  • Coates A, Ng AY. Learning Feature Representations with K-means. Stanford University, 2012. Available from URL: https://www-cs.stanford.edu/~acoates/papers/coatesng_nntot2012.pdf.
  • Сивер Дэвид. Майнд машины. Открываем заново технологию АВС, 2000. Available from URL: http://www.mindmachine.ru/book/(in Russian).
  • Selskyy P, Vakulenko D, Televiak, A, et al. On an algorithm for decision-making for the optimization of disease prediction at the primary health care level using neural network clustering. Fam Med Prim Care Rev 2018; 20(2): 171–175.
  • Mintser O, Martsenyuk V, Vakulenko D. On data mining technique for differential diagnostics based on data of arterial oscillography.In: Zawiślak S, Rysiński J, eds. Engineer of the XXI Century. Mechanisms and Machine Science 2020; vol 70. Cham: Springer. Available from URL: https://doi.org/10.1007/978-3-030-13321-4_23..

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.desklight-0a9a0baa-cdad-443e-95e6-03ce04fbf1bc
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.