Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Journal

2017 | 3 | 9 | 4001-4005

Article title

Effects of Acid Treatment on the SEM-EDX Characteristics of Kaolin Clay

Content

Title variants

Languages of publication

EN

Abstracts

EN
Raw kaolin was refluxed by sulphuric acid in variable concentrations of 2 M, 4 M, 6 M and 8 M. The morphology and elemental compositions of the acid-leached kaolin were analyse by Field Scanning Electron Microscopy (FESEM) and Energy Dispersive X-ray analysis (EDX) respectively. The disintegration and leaching of Al3+ ions of the clay are determined by FESEM studies. The acid treatment increases the silicon content and decreases aluminium content as revealed by EDX analysis. The leaching of Al3+ ions increases with gradual increase in concentration of the acid. Therefore, kaolin reflux with acid at lower strength (2 M and 4 M) are more dispersed and more industrially useful than that which is treated at higher acid strength.

Keywords

Journal

Year

Volume

3

Issue

9

Pages

4001-4005

Physical description

Dates

published
2017-09-23

Contributors

author
  • Universiti Tun Hussein Onn Malaysia
  • Universiti Tun Hussein Onn Malaysia
  • Universiti Tun Hussein Onn Malaysia
  • Universiti Tun Hussein Onn Malaysia

References

  • Olaremu, G. (2015). Physico-Chemical Characterization of Akoko Mined Kaolin Clay. Journal of Mineral and Materials Characterization and Engineering, 3(5), 353–361. doi: 10.4236/jmmce.2015.35038
  • Zhang, B., Pan, L., Zhang, H. -Y., Liu, S. -T., Ye, Y., Xia, M. -S., & Chen, X.-G. (2012). Effects of acid treatment on the physico-chemical and pore characteristics of halloysite. Colloids Surfaces A Physicochemical and Engineering Aspects, 396, 182–188. doi: 10.1016/j.colsurfa.2011.12.067
  • Kumar, S., Panda, A. K., & Singh, R. K. (2013). Preparation and Characterization of Acids and Alkali Treated Kaolin Clay. Bulletin of Chemical Reaction Engineering & Catalysis, 8(1), 61–69.
  • Panda, K., Mishra, B. G., Mishra, D. K., & Singh, R. K. (2010). Effect of sulphuric acid treatment on the physico-chemical characteristics of kaolin clay. Colloids Surfaces A Physicochemical and Engineering Aspects, 363(1–3), 98–104. doi: 10.1016/j.colsurfa.2010.04.022
  • Trabelsi, W., & Tlili, A. (2017). Phosphoric acid purification through different raw and activated clay materials (Southern Tunisia). Journal of African Earth Sciences, 129, 647–658. doi: 10.1016/j.jafrearsci.2017.02.008
  • Yang, N., Zhang, Z.-C., Ma, N., Liu, H.-L., Zhan, X.-Q., Li, B., … Shi, D. (2017). Effect of surface modified kaolin on properties of polypropylene grafted maleic anhydride. Results in Physics, 7, 969–974. doi: 10.1016/j.rinp.2017.02.030
  • Valášková, M., Rieder, M., Matějka, V., Čapková, P., & Slíva, A. (2007). Exfoliation/delamination of kaolinite by low-temperature washing of kaolinite-urea intercalates. Applied Clay Science, 35(1–2), 108–118. doi: 10.1016/j.clay.2006.07.001
  • Valášková, M., Martynková, G. M., & Matìjka, M. (2007). Chemically activated kaolinites after de-intercalation of formamide. Ceramics, 51(1), 24–29.
  • Horváth, E., Frost, R. L., Makó, É., Kristóf, J., & Cseh, T. (2003). Thermal treatment of mechanochemically activated kaolinite. Thermochimica Acta, 404(1–2), 227–234. doi: 10.1016/S0040-6031(03)00184-9
  • Jikan, S. S., Badarulzaman, N. A., Yahaya, S., & Adamu, A. D. (2017). Delamination of Kaolinite by Intercalation of Urea Using Milling. Materials Science Forum, 888, 136–140. doi: 10.4028/www.scientific.net/msf.888.136
  • Zykova, J., Kalendova, A., Matejka, V., Zadrapa, P., & Malac, J. (2010). Influence of kaolinite modification on the PVC composites properties. In Advance in sensors, signals and materials, November, 3–5 (pp. 30–34). Faro: n. d.
  • Tang, W., Song, L., Zhang, S., Li, H., Sun, J., & Gu, X. (2016). Preparation of thiourea-intercalated kaolinite and its influence on thermostability and flammability of polypropylene composite. Journal of Materials Science, 52(1), 208–217. doi: 10.1007/s10853-016-0323-8
  • Lenarda, M., Storaro, L., Talon, A., Moretti, E., & Riello, P. (2007). Solid acid catalysts from clays: Preparation of mesoporous catalysts by chemical activation of metakaolin under acid conditions. Journal of Colloid and Interface Science, 311(2), 537–543. doi: 10.1016/j.jcis.2007.03.015
  • Belver, C., Bañares Muñoz, M. A., & Vicente, M. A. (2002). Chemical Activation of a Kaolinite under Acid and Alkaline Conditions. Chemistry of Materials, 14(5), 2033–2043. doi: 10.1021/cm0111736
  • Woumfo, D., Kamga, R., Figueras, F., & Njopwouo, D. (2007). Acid activation and bleaching capacity of some Cameroonian smectite soil clays. Applied Clay Science, 37(1–2), 149–156. doi: 10.1016/j.clay.2006.12.008
  • Srasra, E., & Trabelsi-Ayedi, M. (2000). Textural properties of acid activated glauconite. Applied Clay Science, 17(1–2), 71–84. doi: 10.1016/s0169-1317(00)00008-9
  • Sengupta, P., Saikia, P., & Borthakur, P. C. (2008). SEM-EDX characterization of an iron-rich kaolinite clay. Journal of Scientific & Industrial Research, 67, 812–818.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.desklight-11bd3210-09f0-4251-bb7f-f6dcf85101e7
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.