2014 | 22 | 2(86) | 37-54
Article title

Logika przekonań warunkowych

Title variants
Logic of Conditional Beliefs
Languages of publication
In this paper I present a simple logic for conditional beliefs in a multi-agent doxastic context (CDL). Conditional beliefs Bi(α/β) encode beliefs in α we would have if we were to learn new information β. The account of this notion is close to the classical theory of belief revision (AGM) and the standard conditional logic, as developed by Stalnaker and Lewis. I give both semantic and axiomatic characterization of conditional beliefs. They are interpreted in terms of plausibility or preference ordering on worlds. I also investigate the relation between notions of belief and knowledge. The logic may be used, for example, for epistemic analysis of some extensive form games.
Physical description
  • Zakład Logiki i Metodologii Nauk, Instytut Filozofii, Uniwersytet im. Adama Mickiewicza, ul. Szamarzewskiego 89, 60- 568 Poznań
  • Aumann R. J. (1995), Backward Induction and Common Knowledge of Rationality, „Games and Economic Behavior” 8(1), 6-19.
  • Baltag A., Smets S. (2006), Conditional Doxastic Models. A Qualitative Approach to Dynamic Belief Revision [w:] Proceedings of WOLLIC’06, Electronic Notes in Theoretical Computer Science, t. 165, 5-21.
  • Baltag A., van Ditmarsch H. P., Moss L. S. (2008), Epistemic Logic and Information Update [w:] Handbook of the Philosophy of Science, P. Adriaans, J. van Benthem (red.), t. 8, Philosophy of Information, Amsterdam: Elsevier/North-Holland, 369-463.
  • Board O. J. (2003), Algorithmic Characterization of Rationalizability in Extensive Form Games, Oxford: Department of Economics, University of Oxford.
  • Chellas B. F. (1980), Modal Logic. An Introduction, Cambridge: Cambridge University Press.
  • Gärdenfors P. (1988), Knowledge in Flux. Modeling the Dynamics of Epistemic States, Cambridge (MA): MIT Press.
  • Grove A. (1988), Two Modellings for Theory Change, „Journal of Philosophical Logic” 17(2), 157-170.
  • Halpern J. Y. (1999a), Set-Theoretic Completeness for Epistemic and Conditional Logic, „Annals of Mathematics and Artificial Intelligence” 26(1-4), 1-27.
  • Halpern J. Y. (1999b), Hypothetical Knowledge and Counterfactual Reasoning, „Game Theory” 28(3), 315-330.
  • Lechniak M. (2011), Przekonania i zmiana przekonań. Analiza logiczna i filozoficzna, Lublin: Wydawnictwo KUL.
  • Leitgeb H., Segerberg K. (2007), Dynamic Doxastic Logic. Why, How, and Where To?, „Synthese” 155(2), 167-190.
  • Lewis D. (1973), Counterfactuals, Oxford: Basil Blackwell.
  • Nute D., Cross C. B. (2002), Conditional Logic [w:] Handbook of Philosophical Logic, D. M. Gabbay, F. Guenthner (red.), t. 4, 2nd ed., Dordrecht: Reidel, 1-98.
  • Spohn W. (1975), An Analysis of Hansson’s Dyadic Deontic Logic, „Journal of Philosophical Logic” 4(2), 231-252.
  • Stalnaker R. (1968), A Theory of Conditionals [w:] Studies in Logical Theory, N. Rescher (red.), Oxford: Blackwell, 98-112.
  • Stalnaker R. (1996), Knowledge, Belief and Counterfactual Reasoning in Games, „Economics and Philosophy” 12(2), 133-163.
  • Stalnaker R. (1998), Belief Revision in Games. Forward and Backward Induction, „Mathematical Social Science” 36(1), 31-56.
  • Stalnaker R. (2006), On Logics of Knowledge and Belief, „Philosophical Studies” 128(1), 169-199.
  • Szymanek K. (1999), Formalna teoria zmiany przekonań, Katowice: Wydawnictwo Uniwersytetu Śląskiego.
  • Van Benthem J., Martinez M. (2008), The Stories of Logic and Information [w:] Handbook of the Philosophy of Science, t. 8: Philosophy of Information, P. Adriaans, J. van Benthem (red.), Amsterdam: Elsevier/North-Holland, 225-288.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.