PL EN


2018 | 542 | 25-45
Article title

Właściwości; zastosowanie oraz bioekonomiczne aspekty otrzymywania dihydroksyacetonu

Content
Title variants
EN
Properties; applications and bioeconomic conditions of dihydroxyacetone production
Languages of publication
PL
Abstracts
PL
Dihydroksyaceton (DHA) jest trójwęglowym monosacharydem redukującym, zaliczanym do ketotrioz. Ze względu na obecność grupy karbonylowej, dwóch I-rzędowych grup hydroksylowych i grup metylowych jest bardzo aktywny chemicznie. DHA znajduje zastosowanie w wielu gałęziach przemysłu. W przemyśle kosmetycznym jest stosowany jako aktywny składnik kremów samoopalających. W medycynie stanowi komponent biomateriałów tamujących krwotoki, jest używany do leczenia bielactwa skóry, wspomaga fotochemioterapeutyczne metody leczenia łuszczycy oraz wykazuje działanie antagonistyczne przy zatruciu cyjankami. Rośnie też zainteresowanie jego zastosowaniem w produkcji żywności. Obecnie na skalę przemysłową DHA jest wytwarzany metodą biologiczną poprzez biokonwersję glicerolu prowadzoną przez bakterie Gluconobacter oxydans ATCC621. W pracy przedstawiono właściwości i zastosowanie dihydroksyacetonu oraz metody jego otrzymywania, z wykorzystaniem jako substratu glicerolu powstającego w produkcji biodiesla.
EN
Dihydroxyacetone (DHA) is a three-carbon reducing monosaccharide, classified as ketotriose. Due to the presence of a carbonyl group, two hydroxyl groups and methyl groups, it is very chemically active. DHA is used in a lot of industries. In the cosmetics industry it is used as an active ingredient in self-tanning creams. In medicine, it is a component of biomaterials that inhibit haemorrhage and it is used to treat skin albinism, supports photochemotherapeutic methods of psoriasis treatment and has an antagonistic effect in cyanide poisoning. There is also growing interest in its use in food production. Currently, on an industrial scale, DHA is produced by a biological method through a bioconversion of glycerol carried out by Gluconobacter oxydans ATCC621. The paper presents the properties and the use of dihydroxyacetone and the method of its preparation using glycerol as a substrate formed in the production of biodiesel.
References
  • Adams A., Tehrani K.A., Keršiené M., De Kimpe N., 2004, Detailed investigation of the production of the bread flavor component 6-acetyl-1,2,3,4-tetrahydropyridine in proline/1,3-dihydroxyacetone model systems, Journal of Agricultural and Food Chemistry, no. 52, s. 5685–5693.
  • Adlercreutz P., Holst O., Mattiasson B., 1985, Characterization of Gluconobacter oxydans immobilized in calcium alginate, Applied Microbiology and Biotechnology, no. 22, s. 1–7.
  • Akhtar N., Blomberg N., Adler L., 1997, Osmoregulation and protein expression in a pbs2A mutant of Saccharomyces cerevisiae during adaptation to hypersaline stress, FEBS Letters, no. 403, s. 173–180.
  • Antinozzi P.A., Ishihara H., Newgard C.B., Wollheim C.B., 2002, Mitochondrial metabolism sets the maximal limit of fuel-stimulated insulin secretion in a model pancreatic beta cell, The Journal of Biological Chemistry, no. 277, s. 11746–11755.
  • Asawanonda P., Oberlender S., Taylor C., 1999, The use of dihydroxyacetone for photoprotection in variegate porphyria, International Journal of Dermatology, no. 38, s. 916–925.
  • Bagheri S., Julkapli N.M., Yehye W.A., 2015, Catalytic conversion of biodiesel derived raw glycerol to value added products, Renewable and Sustainable Energy Review, no. 41, s. 113–127
  • Bakker B.M.M., Michels P.A.M., Opperdoes F.R., Westerhoff H.V., 1999, What controls glycolysis in bloodstream form Trypanosoma brucei?, The Journal of Biological Chemistry, no. 274, s. 14551––14559.
  • Barchiesi F., Silvestri C., Arzeni D., Ganzetti G., Castelletti S., Simonetti O., Cirioni O., Kamysz W., Kamysz E., Spreghini E., Abruzzetti A., Riva A., Offidani A.M., Giacometti A., Scalise G., 2009, In vitro susceptibility of dermatophytes to conventional and alternative antifungal agents, Medical Mycology, vol. 47(3), s. 321–326.
  • Bauer R., Katsikis N., Varga S., Hekmat D., 2005, Study of the inhibitory effect of the product dihydroxyacetone on Gluconobacter oxydans in a semi-continuous two-stage repeated-fed-batch process, Bioprocess and Biosystems Engineering, no. 5, s. 37–43.
  • Bianchi C.L., Canton P., Dimitratos N., Porta F., Prati L., 2005, Selective oxidation of glycerol with oxygen using mono and bimetallic catalysts based on Au, Pd and Pt metals, Catalysis Today, no. 102–103, s. 203–212.
  • Black C.S., Nair G.R., 2013, Bioconversion of glycerol to dihydroxyacetone by immobilized Gluconacetobacter xylinus cells, International Journal of Chemical Engineering and Applications, vol. 4(5), s. 310–314.
  • Błażejak S., 2013, Bakterie kwasu octowego i kierunki ich wykorzystania w biotechnologii, [w:] Zastosowanie wybranych drobnoustrojów w biotechnologii żywności, red. M. Gniewosz, E. Lipińska, Wydawnictwo SGGW, Warszawa, s. 209–235.
  • Błażejak S., Stasiak-Różańska L., Markowski K., Lipińska E., 2011, Zwiększenie zdolności biosyntezy dihydroksyacetonu przez bakterie Gluconacetobacter xylinus za pomocą mutagenizacji promieniowaniem UV, Acta Scientarum Polonorum Biotechnologia, vol. 10(2), s. 17–24.
  • Brandner A., Lehnert K., Bienholz A., Lucas M., Claus P., 2009, Production of biomass-derived chemicals and energy: chemocatalytic conversions of glycerol, Topics in Catalysis, no. 52, s. 278–287.
  • Buttery R.G., Orts W.J., Takeoka G.R., Nam Y., 1999, Volatile flavor components of rice cakes, Journal of Agricultural and Food Chemistry, no. 47, s. 4353–4356.
  • Castells J., Geijo F., López-Calahorra F., 1980, The formoin reaction. A promising entry to carbohydrates from formaldehyde, Tetrahedron Letters, vol. 21(47), s. 4517–4520.
  • Castells J., López-Calahorra F., Geijo F., 1983, The formoin reaction, Carbohydrate Research, no. 116, s. 197–207.
  • Charmantray F., El Blidi L., Gefflaut T., Hecquet L., Bolte J., Lemaire M., 2004, Improved straightforward chemical synthesis of dihydroxyacetone phosphate through enzymatic desymmetrization of 2,2-dimethoxypropane-1,3-diol., The Journal of Organic Chemistry, no. 69, s. 9310–9312.
  • Choquenet B., Couteau C., Paparis E., Coiffard L.J.M., 2009, Foundations and self-tanning products: Do they provide any protection from the sun?, Journal of Dermatology, no. 36, s. 587–591.
  • Cichy M., 2012, Nowe kierunki wykorzystania glicerolu w przemyśle chemicznym, [w:] Adsorbenty i katalizatory. Wybrane technologie a środowisko, red. J. Ryczkowski, Uniwersytet Rzeszowski, Rzeszów, s. 309–322.
  • Cieplak M., Ceborska M., Cmoch P., Jarosz S., 2012, Synthesis of higher carbon sugars from dihydroxyacetone and D-arabinose: an organocatalytic approach, Asymmetry, no. 23, s. 1213–1217.
  • Ciriminna R., Palmisano G., Della Pina C., Rpssi M., Pagliaro M., 2006, One-pot electrocatalytic oxidation of glycerol to DHA, Tetrahedron Letters, no. 47, s. 6993–6995.
  • Claus P., Demirel-Gülen S., Lucas M., Lehnert K., 2007, Verfahren zur selektiven Herstellung von Dihydroxyaceton aus Glycerin sowie ein Verfahren zur Herstellung eines Metallkatalysators zur selektiven Oxidation von Glycerin. Patent DE102005044913A1.
  • Crotti C., Farnetti E., 2015, Selective oxidation of glycerol catalyzed by iron complexes, Journal of Molecular Catalysis A: Chemical, no. 396, s. 353–359.
  • Demirel S., Lehnert K., Lucas M., Claus P., 2007, Use of renewables for the production of chemicals: glycerol oxidation over carbon supported gold catalysts, Applied Catalysis B: Environmental, no. 70, s. 637–643.
  • Bakker B.M.M., Michels P.A.M., Opperdoes F.R., Westerhoff H.V., 1999, What controls glycolysis in bloodstream form Trypanosoma brucei?, The Journal of Biological Chemistry, no. 274, s. 14551––14559.
  • Barchiesi F., Silvestri C., Arzeni D., Ganzetti G., Castelletti S., Simonetti O., Cirioni O., Kamysz W., Kamysz E., Spreghini E., Abruzzetti A., Riva A., Offidani A.M., Giacometti A., Scalise G., 2009, In vitro susceptibility of dermatophytes to conventional and alternative antifungal agents, Medical Mycology, vol. 47(3), s. 321–326.
  • Bauer R., Katsikis N., Varga S., Hekmat D., 2005, Study of the inhibitory effect of the product dihydroxyacetone on Gluconobacter oxydans in a semi-continuous two-stage repeated-fed-batch process, Bioprocess and Biosystems Engineering, no. 5, s. 37–43.
  • Bianchi C.L., Canton P., Dimitratos N., Porta F., Prati L., 2005, Selective oxidation of glycerol with oxygen using mono and bimetallic catalysts based on Au, Pd and Pt metals, Catalysis Today, no. 102–103, s. 203–212.
  • Black C.S., Nair G.R., 2013, Bioconversion of glycerol to dihydroxyacetone by immobilized Gluconacetobacter xylinus cells, International Journal of Chemical Engineering and Applications, vol. 4(5), s. 310–314.
  • Błażejak S., 2013, Bakterie kwasu octowego i kierunki ich wykorzystania w biotechnologii, [w:] Zastosowanie wybranych drobnoustrojów w biotechnologii żywności, red. M. Gniewosz, E. Lipińska, Wydawnictwo SGGW, Warszawa, s. 209–235.
  • Błażejak S., Stasiak-Różańska L., Markowski K., Lipińska E., 2011, Zwiększenie zdolności biosyntezy dihydroksyacetonu przez bakterie Gluconacetobacter xylinus za pomocą mutagenizacji promieniowaniem UV, Acta Scientarum Polonorum Biotechnologia, vol. 10(2), s. 17–24.
  • Brandner A., Lehnert K., Bienholz A., Lucas M., Claus P., 2009, Production of biomass-derived chemicals and energy: chemocatalytic conversions of glycerol, Topics in Catalysis, no. 52, s. 278–287.
  • Buttery R.G., Orts W.J., Takeoka G.R., Nam Y., 1999, Volatile flavor components of rice cakes, Journal of Agricultural and Food Chemistry, no. 47, s. 4353–4356.
  • Castells J., Geijo F., López-Calahorra F., 1980, The formoin reaction. A promising entry to carbohydrates from formaldehyde, Tetrahedron Letters, vol. 21(47), s. 4517–4520.
  • Castells J., López-Calahorra F., Geijo F., 1983, The formoin reaction, Carbohydrate Research, no. 116, s. 197–207.
  • Charmantray F., El Blidi L., Gefflaut T., Hecquet L., Bolte J., Lemaire M., 2004, Improved straightforward chemical synthesis of dihydroxyacetone phosphate through enzymatic desymmetrization of 2,2-dimethoxypropane-1,3-diol., The Journal of Organic Chemistry, no. 69, s. 9310–9312.
  • Choquenet B., Couteau C., Paparis E., Coiffard L.J.M., 2009, Foundations and self-tanning products: Do they provide any protection from the sun?, Journal of Dermatology, no. 36, s. 587–591.
  • Cichy M., 2012, Nowe kierunki wykorzystania glicerolu w przemyśle chemicznym, [w:] Adsorbenty i katalizatory. Wybrane technologie a środowisko, red. J. Ryczkowski, Uniwersytet Rzeszowski, Rzeszów, s. 309–322.
  • Cieplak M., Ceborska M., Cmoch P., Jarosz S., 2012, Synthesis of higher carbon sugars from dihydroxyacetone and D-arabinose: an organocatalytic approach, Asymmetry, no. 23, s. 1213–1217.
  • Ciriminna R., Palmisano G., Della Pina C., Rpssi M., Pagliaro M., 2006, One-pot electrocatalytic oxidation of glycerol to DHA, Tetrahedron Letters, no. 47, s. 6993–6995.
  • Claus P., Demirel-Gülen S., Lucas M., Lehnert K., 2007, Verfahren zur selektiven Herstellung von Dihydroxyaceton aus Glycerin sowie ein Verfahren zur Herstellung eines Metallkatalysators zur selektiven Oxidation von Glycerin. Patent DE102005044913A1.
  • Crotti C., Farnetti E., 2015, Selective oxidation of glycerol catalyzed by iron complexes, Journal of Molecular Catalysis A: Chemical, no. 396, s. 353–359.
  • Demirel S., Lehnert K., Lucas M., Claus P., 2007, Use of renewables for the production of chemicals: glycerol oxidation over carbon supported gold catalysts, Applied Catalysis B: Environmental, no. 70, s. 637–643.
  • De Muynck C., Pereira C.S.S., Naessens M., Soetaert W., Vandamme E.J., 2007, The genus Gluconobacter oxydans: comprehensive overview of biochemistry and biotechnological applications, Critical Reviews in Biotechnology, no. 27, s. 147–171.
  • Deppenmeier U., Hoffmeister M., Prust C., 2002, Biochemistry and biotechnological applications of Gluconobacter strains, Applied Microbiology and Biotechnology, no. 60, s. 233–242.
  • Dikshit P.K., Moholkar V.S., 2016, Optimization of 1,3-dihydroxyacetone production from crude glycerol by immobilized Gluconobacter oxydans MTCC 904, Bioresource Technology, no. 216, s. 1058–1065.
  • Dimitratos N., Messi C., Porta F., Prati L., Villa A., 2006, Investigation on the behaviour of Pt(0)/carbon and Pt(0),Au(0)/carbon catalysts employed in the oxidation of glycerol with molecular oxygen in water, Journal of Molecular Catalysis A: Chemical, no. 256, s. 21–28.
  • Draelos Z.D., 2002, Self-tanning lotions are they a healthy way to achieve a tan?, American Journal of Clinical Dermatology, vol. 3(5), s. 317–318.
  • Enders D., Voith M., Lenzen A., 2005, The dihydroxyacetone unit – a versatile C3 building block in organic synthesis, Angewandte Chemie International Edition, no. 44, s. 1304–1325.
  • Erni B., Siebold C., Christen S., Srinivas A., Oberholzer A., Baumann U., 2006, Small substrate, big surprise: fold, function and phylogeny of dihydroxyacetone kinases, Cellular and Molecular Life Sciences, no. 63, s. 890–900.
  • Ethier S., Woisard K., Vaughan D., Wen Z., 2011, Continuous culture of the microalgae Schizochytrium limacinum on biodiesel-derived crude glycerol for producing docosahexaenoic acid, Bioresource Technology, vol. 102(1), s. 88–93.
  • Ferroni E.L., DiTella V., Ghanayem N., Jeske R., Jodlowski C., O’Connell M., Styrsky J., Svoboda R., Venkataraman A., Winkler B.M., 1999, A three-step preparation of dihydroxyacetone phosphate dimethyl acetal, The Journal of Organic Chemistry, no. 64, s. 4943–4945.
  • Fesq H., Brockow K., Strom K., Mempel M., Ring J., Abeck D., 2001, Dihydroxyacetone in a new formulation – a powerful therapeutic option in vitiligo, Dermatology, no. 203, s. 241–243.
  • Garcia R., Besson M., Gazzelot P., 1995, Chemoselective catalityc oxidation of glycerol with air on platinum metals, Applied Catalysis A, no. 127, s. 165–176.
  • Gätgens C., Degner U., Bringer-Meyer S., Herrmann U., 2007, Biotransformation of glycerol to dihydroxyacetone by recombinant Gluconobacter oxydans DSM 2343, Applied Microbiology and Biotechnology, no. 76, s. 553–559.
  • Gehrer E., Harder W., Vogel H., Knuth B., Ebel K., Groenig C., 1995, Preparation of dihydroxyacetone. United States Patent No. 5410089.
  • Green S.R., Whalen E.A., Molokie E., 1961, Dihydroxyacetone: Production and uses, Journal of Biochemical and Microbiological Technology and Engineering, vol. 3(4), s. 351–355.
  • Habe H., Fukoka T., Kitamoto D., Sakaki K., 2009, Biotechnological production of D-glycerid acid and its application, Applied Microbiology and Biotechnology, no. 84, s. 445–452.
  • Habe H., Fukoka T., Morita T., Kitamoto D., Yakushi T., Matsushita K., Sakaki K., 2010, Disruption of the membrane bound alcohol dehydrogenase – encoding gene improved glycerol use and dihydroxyacetone productivity in Gluconobacter oxydans, Bioscience, Biotechnology and Biochemistry, vol. 74(7), s. 1391–1395.
  • Habe H., Shimada J., Yakushi T., Hattori H., Ano Y., Fukuoka T., Kitamoto D., Itagaki M., Watanabe K., Yanagishita H., Matsushita K., Sakaki K., 2009, Microbial production of glyceric acid, an organic acid that can be mass produced from glycerol, Applied and Environmental Microbiology, vol. 75(24), s. 7760–7766.
  • Hekmat D., Bauer R., Fricke J., 2003, Optimization of the microbial synthesis of dihydroxyacetone from glycerol with Gluconobacter oxydans, Bioprocess. Biosystems Engineering, no. 26, s. 109–116.
  • Hekmat D., Bauer R., Neff V., 2007, Optimization of the microbial synthesis of dihydroxyacetone in a semi-continuous repeated-fed-batch process by in situ immobilization of Gluconobacter oxydans, Process Biochemistry, no. 42, s. 71–76.
  • Henderson P.W., Kadouch D.J.M., Singh S.P., Zawaneh P.N., Weiser J., Yazdi S., Weinstein A., Krotscheck U., Wechsler B., Putnam D., Spector J.A., 2010, A rapidly resorbable hemostatic biomaterial based on dihydroxyacetone, Journal of Biomedical Materials Research Part A, vol. 93(2), s. 776–782.
  • Holst O., Lundbäck H., Mattiasson B., 1985, Hydrogen peroxide as an oxygen source for immobilized Gluconobacter oxydans converting glycerol to dihydroxyacetone, Applied Microbiology and Biotechnology, no. 22, s. 383–388.
  • Hu W., Knight D., Lowry B., Varma A., 2010, Selective oxidation of glycerol to dihydroxyacetone over Pt-Bi/C catalyst: optimization of catalyst and reaction conditions, Industrial & Engineering Chemistry Research, no. 49, s. 10876–10882.
  • Hu Z.C., Liu Z.Q., Xu J.M., Zheng Y.G., Shen Y.C., 2012, Improvement of 1,3-dihydroxyacetone production from Gluconobacter oxydans by ion beam implantation, Preparative Biochemistry and Biotechnology, vol. 42(1), s. 15–28.
  • Hu Z.C., Liu Z.Q., Zheng Y.G., Shen Y.C., 2010, Production of 1,3-dihydroxyacetone from glycerol by Gluconobacter oxydans ZJB09112, Journal of Microbiology and Biotechnology, vol. 20(2), s. 340–345.
  • Hu Z.C., Zheng Y.G., Shen Y.C., 2010, Dissolved-oxygen-stat fed-batch fermentation of 1,3-dihydroxyacetone from glycerol by Gluconobacter oxydans ZJB09112, Biotechnology and Bioprocess Engineering, no. 15, s. 651–656.
  • Hu Z.C., Zheng Y.G., 2011, Enhancement of 1,3-dihydroxyacetone production by a UV-induced mutant of Gluconobacter oxydans with DO control strategy, Applied Biochemistry and Biotechnology, no. 165, s. 1152–1160.
  • Hu Z.C., Zheng Y.G., Shen Y.C., 2011, Use of glycerol for producing 1,3-dihydroxyacetone by Gluconobacter oxydans in an airlift bioreactor, Bioresource Technology, no. 102, s. 7177–7182.
  • Ivy J.L., 1998, Effect of pyruvate and dihydroxyacetone on metabolism and aerobic endurance capacity, Medicine & Science in Sports & Exercise, no. 30, s. 837–843.
  • Jack T.R., Zajic J.E., 2006, The immobilization of whole cells, Advances in Biochemical Engineering and Biotechnology, no. 5, s. 125–145.
  • Kachel-Jakubowska M., Kraszkiewicz A., Szpryngiel M., Niedziółka I., 2011, Możliwości wykorzystania odpadów poprodukcyjnych z rzepaku ozimego na cele energetyczne, Inżynieria Rolnicza, nr 6(131), s. 61–68.
  • Katryniok B., Kimura H., Skrzyńska E., Girardon J.S., Fongarland P., Capron M., Ducoulombier R., Mimura N., Paula S., Dumeignil F., 2011, Selective catalytic oxidation of glycerol: perspectives for high value chemicals, Green Chemistry, no. 13, s. 1960–1979.
  • Kimura H., 1993, Selective oxidation of glycerol on a platinum-bismuth catalyst by using a fixed bed reactor, Applied Catalysis A, no. 105, s. 147–158.
  • Koeller K.M., Wong C.H., 2001, Enzymes for chemical synthesis, Nature, no. 409, s. 232–240.
  • Levy S.B., 2001, Cosmetics that imitate a tan, Dermatologic Therapy, no. 14, s. 215–219.
  • Lewis R.J.Sr., 2007, Hawley’s Condensed Chemical Dictionary, 15th Edition, John Wiley & Sons, New York.
  • Li M., Wu J., Lin J., Wei D., 2010, Expression of vitreoscilla hemoglobin enhances cell growth and dihydroxyacetone production in Gluconobacter oxydans, Current Microbiology, no. 61, s. 370–375.
  • Li M., Wu J., Liu X., Lin J., Wei D., Chen H., 2010, Enhanced production of dihydroxyacetone from glycerol by over expression of glycerol dehydrogenase in an alcohol-deficient mutant of Gluconobacter oxydans, Bioresource Technology, no. 101, s. 8294–8299.
  • Liebminger S., Hofbauer R., Siebenhofer M., Nyanhongo G.S., Guebitz G.M., 2014, Microbial conversion of crude glycerol to dihydroxyacetone, Waste Biomass Valor, no. 5, s. 781–787.
  • Liu Z., Hu Z., Zheng Y., Shen Y., 2008, Optimization of cultivation conditions for the production of 1,3-dihydroxyacetone by Pichia membranifaciens using response surface methodology, Biochemical Engineering Journal, no. 38, s. 285–291.
  • Liu X., Jensen P.R., Workman M., 2012, Bioconversion of crude glicerol feedstocks into ethanol by Pachysolen tannophilus, Bioresource Technology, no. 104, s. 579–586.
  • Liu Y.P., Sun Y., Tan C., Li H., Zheng X.J., Jin K.Q., Wang G., 2013, Efficient production of dihydroxyacetone from biodiesel-derived crude glycerol by newly isolated Gluconobacter frateurii, Bioresource Technology, no. 142, s. 384–389.
  • Liu H.M., Zou D.P., Zhang F., Zhu W.G., Peng T., 2004, Stereoselective synthesis of new higher carbon sugars from D-xylose, European Journal of Organic Chemistry, no. 10, s. 2103–2106.
  • Lu L., Wei L., Zhu K., Wei D., Hua Q., 2012, Combining metabolic engineering and adaptive evolution to enhance the production of dihydroxyacetone from glycerol by Gluconobacter oxydans in a low-cost way, Bioresource Technology, no. 117, s. 317–324.
  • Lux S., Siebenhofer M., 2013, Synthesis of lactic acid from dihydroxyacetone: use of alkaline-earth metal hydroxides, Catalysis Science & Technology, no. 3, s. 1380–1385.
  • Ma L., Lu W., Xia Z., Wen J., 2010, Enhancement of dihydroxyacetone production by a mutant of Gluconobacter oxydans, Biochemical Engineering Journal, no. 49, s. 61–67.
  • Martynenko N.N., Gracheva I.M., 2003, Physiological and biochemical characteristics of immobilized champagne yeasts and their participation in champagnizing processes: A review, Applied Biochemistry and Microbiology, vol. 39(5), s. 439–445.
  • Mishra R., Jain S.R., Kumar A., 2008, Microbial production of dihydroxyacetone, Biotechnology Advances, no. 26, s. 293–303.
  • Misterska M., Szulczyńska-Gabor J., Żaba R., 2009, Etiopatogeneza, obraz kliniczny i leczenie bielactwa, Postępy w Dermatologii i Alergologii, nr 4, s. 212–223.
  • Nabe K., Izuo N., Yamada S., Chibata I., 1979, Conversion of glycerol to dihydroxyacetone by immobilized whole cells of Acetobacter xylinum, Applied and Environmental Microbiology, vol. 38(6), s. 1056–1060.
  • Navrátil M., Tkáč J., Švitel J., Danielsson B., Šturdik E., 2001, Monitoring of the bioconversion of glycerol to dihydroxyacetone with immobilized Gluconobacter oxydans cell using thermometric flow injection analysis, Process Biochemistry, no. 36, s. 1045–1052.
  • Nguyen B.C., Kochevar I.E., 2003, Factors influencing sunless tanning with dihydroxyacetone, British Journal of Dermatology, no. 149, s. 332–340.
  • Nguyen H.T.T., Nevoigt E., 2009, Engineering of Saccharomyces cerevisiae for the production of dihydroxyacetone (DHA) from sugars: A proof of concept, Metabolic Engineering, no. 11, s. 335–346.
  • Niknahad H., Ghelichkhani E., 2002, Antagonism of cyanide poisoning by dihydroxyacetone, Toxicology Letters, no. 132, s. 95–100.
  • Niknahad H., O’Brien P.J., 1996, Antidotal effect of dihydroxyacetone against cyanide toxicity in vivo, Toxicology and Applied Pharmacology, no. 138, s. 186–191.
  • Obeid O.A., Bittar S.T., Hwalla N., Emery P.W., 2005, Effect of diet supplementation with glutamine, dihydroxyacetone, and leucine on food intake, weight gain, and postprandial glycogen metabolism of rats, Nutrition, no. 21, s. 224–229.
  • Obeid O.A., Jamal Z.M., Hwalla N., Emery P.W., 2006, The effect of glutamine and dihydroxyacetone supplementation on food intake, weight gain, and postprandial glycogen synthesis in female Zucker rats, Nutrition, no. 22, s. 794–801.
  • O’Neil M.J. (ed.), 2006, The Merck Index – An Encyclopedia of Chemicals, Drugs, and Biologicals, Merck and Co., Inc., Whitehouse Station, NJ, s. 540.
  • Padhi S.K., Panda A.K., Singh R.K., 2013, Value added derivatives of glycerol obtained from biodiesel industry: a review, International Journal of Engineering Research and Technology, no. 2, s. 1119–1169.
  • Painter R.M., Pearson D.M., Waymouth R.M., 2010, Selective catalytic oxidation of glycerol to dihydroxyacetone, Angewandte Chemie, no. 122, s. 9646–9649
  • Pavlovic-Djuranovic S., Kun J.F.J., Schultz J.E., Beitz E., 2006, Dihydroxyacetone and methylglyoxal as permeants of the Plasmodium aquaglyceroporin inhibit parasite proliferation, Biochimica et Biophysica Acta, no. 1758, s. 1012–1017.
  • Petersen A.B., Wulf H.C., Gniadecki R., Gajkowska B., 2004, Dihydroxyacetone, the active browning ingredient in sunless tanning lotions, induces DNA damage, cell-cycle block and apoptosis in cultured HaCaT keratinocytes, Mutation Research, no. 560, s. 173–186.
  • Piattoni C.V., Figueroa C.M., Diez M.D.A., Parcerisa I.L., Antuna S., Comelli R.A., Guerrero S.A., Beccaria A.H., Iglesisas A.A., 2013, Production and characterization of Escherichia coli glycerol dehydrogenase as a tool for glycerol recycling, Process Biochemistry, no. 48, s. 406–412.
  • Rajatanavin N., Suwanachote S., Kulkollakarn S., 2008, Dihydroxyacetone: a safe camouflaging option in vitiligo, International Journal of Dermatology, no. 47, s. 402–406.
  • Raška J., Skopal F., Komers K., Machek J., 2007, Kinetics of glycerol biotransformation to dihydroxyacetone by immobilized Gluconobacter oxydans and effect of reaction conditions, Czechoslovak Chemical Communications, vol. 72(9), s. 1269–1283.
  • Ro Y.M., Eom C.Y., Song T., Cho J.W., Kim Y.M., 1997, Dihydroxyacetone synthase from a methanol-utilizing Carboxydobacterium, Acinetobacter sp. strain JC1 DSM 3803, Journal of Bacteriology, no. 179, s. 6041–6047.
  • Rodrigues E.G., Pereira M.F.R., Delgado J.J., Chen X., Órfao J.J.M., 2011, Enhancement of the selectivity to dihydroxyacetone in glycerol oxidation using gold nanoparticles supported on carbon nanotubes, Catalysis Communications, vol. 16(1), s. 64–69.
  • Rogers C.J., 2005, Spray-on tanning, Aesthetic Surgery Journal, vol. 25(4), s. 413–415.
  • Rychlik M., Grosch W., 1996, Identification and quantification of potent odorants formed by toasting of wheat bread, Lebensmittel-Wissenschaft & Technologie, no. 29, s. 515–525.
  • Saint-Amans S., Girbal L., Andrade J., Ahrens K., Soucaille P., 2001, Regulation of carbon and electron flow in Clostridium butyricum VPI 3266 grown on glucose-glycerol mixtures, Journal of Bacteriology, vol. 183(5), s. 1748–1754.
  • Schieberle P., 1991, Primary odorants in popcorn, Journal of Agricultural and Food Chemistry, vol. 39(6), s. 1141–1144.
  • Schmid D., Belser E., Zülli F., 2007, Self-tanning based on stimulation of melanin biosynthesis, Cosmetics & Toiletries, vol. 122(7), s. 55–62.
  • Shipar A.H., 2006, Formation of the Heyns rearrangement products in dihydroxyacetone and glycine Maillard reaction: A computational study, Food Chemistry, no. 97, s. 231–243.
  • Stanko R.T., Arch J.E., 1996, Inhibition of regain body weight and fat with addition of 3-carbon compounds to the diet with hyperenergetic refeeding after weight reduction, International Journal of Obesity and Related Metabolic Disorder, vol. 20(10), s. 925–930.
  • Stanko R.T., Tietze D.L., Arch J.E., 1992, Body composition, energy utilization and nitrogen metabolism with a severely restricted diet supplemented with dihydroxyacetone and pyruvate, The American Journal of Clinical Nutrition, no. 55, s. 771–776.
  • Stasiak-Różańska L., Błażejak S., 2012, Production of dihydroxyacetone from an aqueous solution of glycerol in the reaction catalyzed by an immobilized cell preparation of acetic acid bacteria Gluconobacter oxydans ATCC 621, European Food Research and Technology, no. 235, s. 1125–1132.
  • Stasiak-Różańska L., Błażejak S., Gientka I., Bzducha-Wróbel A., Lipińska E., 2017, Utilization of a waste glycerol fraction using and reusing immobilized Gluconobacter oxydans ATCC 621 cell extract, Electronic Journal of Biotechnology, no. 27, s. 44–48.
  • Stasiak-Różańska L., Błażejak S., Miklaszewska A., 2011, Application of immobilized cell preparation obtained from biomass of Gluconacetobacter xylinus bacteria in biotransformation of glycerol to dihydroxyacetone, Acta Scientarum Polonorum, Technologia Alimentaria, vol. 10(1), s. 35–49.
  • Stasiak-Różańska L., Błażejak S., Ratz A., 2010, Investigations into the optimization of parameters of glycerol biotransformation to dihydroxyacetone with the use of immobilized cells of Gluconacetobacter xylinus, Polish Journal of Food and Nutrition Science, vol. 60(3), s. 273–280.
  • Stewart M.Q., Esposito R.D., Gowani J., Goodman J.M., 2001, Alcohol oxidase and dihydroxyacetone synthase, the abundant peroxisomal proteins of methylotrophic yeasts, assemble in different cellular compartments, Journal of Cell Science, no. 114, s. 2863–2868.
  • Stopiglia C.D.O., Vieira F.J., Mondadori A.G., Oppe T.P., Scroferneker M.L., 2011, In vitro antifungal activity of dihydroxyacetone against causative agents of dermatomycosis, Mycopathologia, no. 171, s. 267–271.
  • Suga Y., Ikejima A., Matsuba S., Ogawa H., 2002, Medical Pearl: DHA application for camouflaging segmental vitiligo and piebald lesions, Journal of The American Academy of Dermatology, no. 47, s. 436–438.
  • Survase S.A., Annapure U.S., Singhol R.S., 2010, Gellan gum as an immobilization matrix for the production of cyclosporin a, Journal of Microbiology and Biotechnology, vol. 20(7), s. 1086–1091.
  • Ślepokura K., Lis T., 2004, Crystal structures of dihydroxyacetone and its derivatives, Carbohydrate Research, no. 339, s. 1995–2007.
  • Ślepokura K., Lis T., 2006, Fosforan dihydroksyacetonu w chemii i biochemii, Wiadomości Chemiczne, vol. 60(1-2), s. 5–46.
  • Švitel J., Šturdík E., 1994, Product yield and by-product formation in glycerol conversion to dihydroxyacetone by Gluconobacter oxydans, Journal of Fermentation and Bioengineering, no. 78, s. 351–355.
  • Taconi K.A., Venkataramanan K.P., Johnson D.T., 2009, Growth and solvent production by Clostridium pasteurianum ATCC 6013 utilizing biodiesel-derived crude glycerol as the sole carbon source, Environmental Progress Sustainable Energy, vol. 28(1), s. 100–110.
  • Taguchi T., Murase S., Miwa I., 2002, Glyceraldehyde metabolism in human erythrocytes in comparison with that of glucose and dihydroxyacetone, Cell Biochemistry and Function, vol. 20(3), s. 223–226.
  • Takayama Y., Okamoto S., Sato F., 1997, Stereoselective synthesis of optically active substituted piperidines and pyrrolidines from amino acid derivatives by titanium(II)-mediated intramolecular cyclization reaction, Tetrahedron Letters, vol. 38, no. 48, s. 8351–8354.
  • Taylor C.R., Kwangsukstith C., Wimberly J., Kollias N., Anderson R.R., 1999, Turbo-PUVA: dihydroxyacetone-enhanced photochemotherapy for Psoriasis – A pilot study, Archives of Dermatology, vol. 135(5), s. 540–544.
  • Tkáč J., Navrátil M., Šturdík E., Gemeiner P., 2001, Monitoring of dihydroxyacetone production during oxidation of glycerol by immobilized Gluconobacter oxydans cells with an enzyme biosensor, Enzyme and Microbial Technology, no. 28, s. 383–388.
  • Tsuura Y., Ishida H., Okamoto Y., Kato S., Horie M., Ikeda H., Seino Y., 1994, Reduced sensitivity of dihydroxyacetone on ATP-sensitive K+ channels of pancreatic beta cells in GK rats, Diabetologia, vol. 37(11), s. 1082–1087.
  • USDA Foreign Agricultural Service, 2017, EU Biofuels Annual 2017, https://gain.fas.usda.gov/Recent%20GAIN%20Publications/Biofuels%20Annual_The%20Hague_EU-28_6-19-2017.pdf (4.11.2018).
  • Uzcátegui N., Carmona-Gutiérrez D., Denninger V., Schoenfeld C., Lang F., Figarella K., Duszenko M., 2007, Antiproliferative effect of dihydroxyacetone on Trypanosoma brucei bloodstream forms: cell cycle progression, subcellular alterations, and cell death, Antimicrobial Agents and Chemotherapy, vol. 51(11), s. 3960–3968.
  • Volpato G., Rodrigues R.C., Heck J.X., Ayub M.A.Z., 2008, Production of organic solvent tolerant lipase by Staphylococcus caseolyticus EX17 using raw glycerol as substrate, Journal of Chemical Technology & Biotechnology, vol. 83(6), s. 821–828.
  • Wang J., Zhang M., Zheng Z., Yu F., Ji J., 2013, The indirect conversion of glycerol into 1,3-dihdyroxyacetone over magnetic polystyrene nanosphere immobilized TEMPO catalyst, Chemical Engineering Journal, no. 229, s. 234–238.
  • Wei S., Song Q., Wei D., 2007a, Repeated use of immobilized Gluconobacter oxydans cells for conversion of glycerol to dihydroxyacetone, Preparative Biochemistry and Biotechnology, no. 37, s. 67–76.
  • Wei S., Song Q., Wei D., 2007b, Production of Gluconobacter oxydans cells from low-cost culture medium for conversion of glycerol to dihydroxyacetone, Preparative Biochemistry and Biotechnology, no. 37, s. 113–121.
  • Weiser J.R., Zawaneh P.N., Putnam D., 2011, Poly(carbonate-ester)s of dihydroxyacetone and lactic acid as potential biomaterials, Biomacromolecules, no. 12, s. 977–986.
  • Wendisch F.V., Lindner S.N., Meiswinkel T.M., 2011, Use of glycerol in biotechnological applications, [w:] Biodiesel – Quality, Emissions and By-Products, eds. G. Montero, M. Stoytcheva, s. 305–340.
  • Wethmar M., Deckwer D., 1999, Semisynthetic culture medium for growth and dihydroxyacetone production by Gluconobacter oxydans, Biotechnology Techniques, vol. 13(4), s. 283–287.
  • Yourick J.J., Koenig M.L., Yourick D.L., Bronaugha R.L., 2004, Fate of chemicals in skin after dermal application: does the in vitro skin reservoir affect the estimate of systemic absorption?, Toxicology and Applied Pharmacology, no. 195, s. 309–320.
  • Zawaneh P.N., Singh S.P., Padera R.F., Henderson P.W., Spector J.A., Putnam D., 2010, Design of an injectable synthetic and biodegradable surgical biomaterial, Proceedings of the National Academy of Sciences, vol. 107(24), s. 11014–11019.
  • Zegarska B., Kaczmarek-Skamira E., Czajkowski R., Olszewska-Słonina D., 2008, Możliwości kosmetyczne korekcji plam bielaczych, Dermatologia Kliniczna, nr 10(1), s. 41–44.
  • Zelikin A.N., Putnam D., 2005, Poly(carbonate-acetal)s from the dimer form of dihydroxyacetone, Macromolecules, no. 38, s. 5532–5537.
  • Zelikin A.N., Zawaneh P.N., Putnam D., 2006, A functionalizable biomaterial based on dihydroxyacetone, an intermediate of glucose metabolism, Biomacromolecules, no. 7, s. 3239–3244.
  • Zheng X., Jin K., Zhang L., Liu Y., 2016, Effects of oxygen transfer coefficient on dihydroxyacetone production from crude glycerol, Brazilian Journal of Microbiology, no. 47, s. 129–135.
  • Zheng Z., Luo M., Yu J., Wang J., Ji J., 2012, Novel process for 1,3-dihydroxyacetone production from glycerol. Technological feasibility study and process design, Industrial and Engineering Chemistry Research, no. 51, s. 3715–3721.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.desklight-1566ee0c-a923-44b4-85c3-774493022abc
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.