Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2014 | 4(46) | 211-220

Article title

Podejście wielomodelowe w regresji danych symbolicznych interwałowych

Authors

Content

Title variants

EN
Ensemble learning in regression model of symbolic interval data

Languages of publication

PL

Abstracts

EN
Ensemble learning, which consist in using a lot of models (instead one single model) can be used in classical data analysis. The aim of the paper is to present an adaptation of ensemble learning with the use of bagging for regression analysis of symbolic interval-valued data. The article presents basic concepts concerning symbolic data analysis, the adaptation of ordinary least squares model for symbolic interval-valued data and the idea of bagging approach in ensemble learning. The empirical part contains the results of simulation studies obtained with the application of real and artificial data sets for centers and centers and range methods. The results show that both methods reach usually better results when using bagging than in case of a single model.

Contributors

author

References

  • Bock H.-H., Diday E. (red.), 2000, Analysis of Symbolic Data. Explanatory Methods for Extracting Statistical Information from Complex Data, Springer Verlag, Berlin-Heidelberg.
  • Billard L., Diday E., 2006, Symbolic Data Analysis. Conceptual Statistics and Data Mining, John Wiley & Sons, Chichester.
  • Breiman L., 1996, Bagging predictors, Machine Learning, vol. 24, s. 123-140.
  • Diday E., Noirhomme-Fraiture M., 2008, Symbolic Data Analysis. Conceptual Statistics and Data Mining, Wiley, Chichester.
  • Dudek A., 2013, Metody analizy danych symbolicznych w badaniach ekonomicznych, Wyd. UE we Wrocławiu, Wrocław.
  • Dudek A., 2004, Tworzenie obiektów symbolicznych z baz danych, Prace Naukowe Akademii Ekonomicznej we Wrocławiu nr 1021, s. 107-114.
  • Dziechciarz J. (red.), 2002, Ekonometria. Metody, przykłady, zadania, Wyd. Akademii Ekonomicznej im. Oskara Langego we Wrocławiu, Wrocław.
  • Gatnar E., 2008, Podejście wielomodelowe w zagadnieniach dyskryminacji i regresji, Wydawnictwo Naukowe PWN, Warszawa.
  • Hastie T., Tibshirani R., Friedman J., 2008, The Elements of Statistical Learning: Data Mining, Inference and Prediction, Springer-Verlag, New York.
  • Jajuga K. (red.), 1999, Ekonometria. Metody i analiza problemów ekonomicznych, Wyd. Akademii Ekonomicznej im. Oskara Langego we Wrocławiu, Wrocław.
  • Kuncheva L., 2004, Combining Pattern Classifiers. Methods and Algorithms, Wiley, New Jersey.
  • Kufel T., 2011, Ekonometria. Rozwiązywanie problemów z wykorzystaniem programu GRETL, PWN, Warszawa.
  • Lattin J., Carroll J.D., Green P.E., 2003, Analyzing Multivariate Data, Brooks/Cole – Thomson Learning, Pacific Grove.
  • Lima-Neto E.A., de Carvalho F.A.T., 2008, Centre and range method to fitting a linear regression model on symbolic interval data, Computational Statistics and Data Analysis, vol. 52, s. 1500-1515.
  • Lima-Neto E.A., de Carvalho F.A.T., 2010, Constrained linear regression models for symbolic interval-valued variables, Computational Statistics and Data Analysis, vol. 54, s. 333-347.
  • Noirhomme-Fraiture M., Brito P., 2011, Far beyond the classical data models: symbolic data analysis, Statistical Analysis and Data Mining, vol. 4, issue 2, s. 157-170.
  • Oldemar R., 2014, The RSDA package of R software, http://www.r-project.org.
  • Polikar R., 2007, Bootstrap inspired techniques in computational intelligence, IEEE Signal Processing Magazine, vol. 24, no. 4, s. 56-72.
  • Sobczyk M., 2013, Ekonometria, C.H. Beck, Warszawa.
  • Walesiak M., Gatnar E. (red.), 2004, Metody statystycznej analizy wielowymiarowej w badaniach marketingowych, Wyd. Akademii Ekonomicznej im. Oskara Langego we Wrocławiu, Wrocław.
  • Welfe A., 2013, Ekonometria, PWN, Warszawa.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.desklight-175e2e57-e018-4d1c-a632-bd4e0c96c865
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.