PL EN


2015 | 11(18) | 69-76
Article title

Partitions and branching processes

Content
Title variants
Languages of publication
EN
Abstracts
EN
A partition, i.e. a division of a finite set into nonempty subsets, is a simple and essential concept of quantitatively understanding the reality. A partition of a number n is a decreasing sequence of natural numbers whose sum equals n. Greater numbers are seen only in terms of the union of partitions. The most important processes such as stochastic processes of branching processes can be expressed most simply using the language of partitions. By means of partitions any Sacała’s line defines a wide class of related quasibranching processes which are more general than Markov processes. Didactically such an approach is extremely useful.
Year
Issue
Pages
69-76
Physical description
Contributors
References
  • Drabik E. (2007). Wykorzystanie ciągu Ulama do analizy fal giełdowych [An application of the Ulam sequence to analysis of the stock exchange waves]. Ekonomika i Organizacja Gospodarki Żywnościowej 69. Pp. 77-87.
  • Florek J., Juzwiszyn J., Misztal A., Sacała J. (2009). O ciągu Ulama, równaniu Pella i rotacjach rynku finansowego [On the Ulam sequence, Pell equation and financial market rotations]. Didactics of Mathematics 5-6 (9-10). Pp. 5-18.
  • Łyko J., Smoluk A. (2000). Problem of group choice and the 2/3 rule. Ekonomia Matematyczna 4. Wydawnictwo AE we Wrocławiu.
  • Narkiewicz W. (1977). Teoria liczb [Number theory]. PWN.
  • Smoluk A. (2000). Standardy, normy i algebra wielkości mianowanych [Standards, norms and algebra of quantities with dimensions]. In: A. Smoluk [ed.]. Elementy metrologii ekonomicznej [Elements of economic metrology]. Wydawnictwo AE we Wrocławiu. Pp. 17-42.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.desklight-19452cd4-8869-47cd-af12-fdb9e0ef69ac
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.