Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


2015 | 1 (47) | 44-55

Article title

Poverty duration of households of the self-employed


Title variants

Languages of publication



This study is one of the first attempts to discover how long households in Poland remain in poverty (out of poverty) and whether the time spent in poverty (out of poverty) depends on the socio-economic group of household. The analysis is conducted using panel data collected in the project ”Social Diagnosis” in 2000-2013. We analyze the survivor functions of staying in poverty (out of poverty) using the Kaplan-Meier method. The probability of survival for a long time in poverty is less than in the case of survival out of poverty. It should be noted that a small percentage of households remained in poverty for almost the entire period of the study. We compare the survival functions of staying in poverty (out of poverty) according to the socio-economic groups of households. For this purpose we use the log-rank test. In both cases the survivor functions are significantly different. Households of the self-employed survive longer out of poverty and simultaneously survive shorter in poverty than the other groups of households.



  • Allison P.D., 2010, Survival analysis, [in:] G.R. Hancock, R.O. Mueller (eds), The Reviewer’s Guide to Quantitative Methods in the Social Sciences, Routledge, New York.
  • Bane M.J. Ellwood D.T., 1986, Slipping into and out of poverty: The dynamics of spells, The Journal of Human Resources, vol. 21, no. 1, pp. 1-23.
  • Council for Social Monitoring, 2013, Social Diagnosis 2000-2013: Integrated Database, http://www.diagnoza.com (accessed 23.04.2014).
  • Czapiński J., Panek T. (eds), 2003, 2005, 2007, 2009, 2011, 2013, Social Diagnosis, http://www. diagnoza.com (accessed 12.03.2014).
  • Greenwood M., 1926, The Natural Duration of Cancer, Reports on Public Health and Medical Subjects, vol. 33, pp. 1-26, Her Majesty’s Stationery Office, London.
  • Hosmer D.W., Lemeshow S., May S., 2008, Applied Survival Analysis. Regression Modeling of Timeto- Event Data, John Wiley & Sons, Inc., Hoboken, New Jersey.
  • Kaplan E.L., Meier P., 1958, Nonparametric estimation from incomplete observations, Journal of the American Statistical Association, vol. 53, no. 282, pp. 457-481.
  • Kleinbaum D.G., Klein M., 2005, Survival Analysis. A Self-Learning Text, Springer, New York.
  • Mills M., 2011, Introducing Survival and Event History Analysis, SAGE Publications, Los Angeles−London−New Delhi−Singapore−Washington DC.
  • Nehrebecka N., 2010, Analiza ubóstwa w Polsce w latach 1997-2000 z wykorzystaniem modeli hazardu, Ekonomista, no. 1, pp. 95-116.
  • Okrasa W., 2000, Who are Poland’s long-term poor? Household risk-managing capabilities according to panel data 1993-1996, Statistics in Transition, vol. 4, no. 5, pp. 841-882.
  • Rodríguez G., 2005, Non-Parametric Estimation in Survival Models, http://data.princeton.edu/ pop509/NonParametricSurvival.pdf (accessed 6.06.2014).
  • Sączewska-Piotrowska A., 2012, Badanie trwałości ubóstwa w Polsce, [in:] A. Rączaszek (ed.), Demograficzne uwarunkowania rozwoju społecznego, Studia Ekonomiczne, Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach no. 98, UE, Katowice, pp. 33-42.
  • Tableman M., Kim J. S., 2005, Survival Analysis Using S. Analysis of Tim-to-Event Data, Chapman & Hall/CRC, Boca Raton.
  • Topińska I., 2005, Dynamika i trwałość ubóstwa w Polsce i na Węgrzech w latach dziewięćdziesiątych,[ in:] S. Golinowska, E. Tarkowska, I. Topińska (eds), Ubóstwo i wykluczenie społeczne. Badania. Metody. Wyniki, IPiSS, Warszawa, pp. 126-147.

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.