Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


2017 | 55 | 1(109) | 7-18

Article title

Beyond Literacies: The Evolving Landscape of Library Support to Research 2.0


Title variants

Poza edukacją kompetencji: rozwój sektora bibliotecznego wsparcia dla badań 2.0

Languages of publication



PURPOSE/THESIS: This paper identifies some of the tasks and roles that academic libraries have to perform in order to react to the emergence of Research 2.0. APPROACH/METHODS: The argument is based on a non-exhaustive review of the recent literature. RESULTS AND CONCLUSIONS: Academic libraries should respond to the emergence of Research 2.0 by filling niches in services provided by other academic units. RESEARCH LIMITATIONS: As a rule, only the literature of the second half of the 2010s was taken into consideration. PRACTICAL IMPLICATIONS: The tasks identified in this paper may not seem urgent today, but the likelihood that they will become an imperative in the future is high. ORIGINALITY/VALUE: The issues identified in this paper are already a part of everyday best practices in several countries.
CEL/TEZA: W artykule wskazano niektóre zadania i role, które biblioteki akademickie muszą spełnić w odpowiedzi na pojawienie się tzw. badań 2.0. KONCEPCJA/METODY BADAŃ: Argumentacja oparta jest na niewyczerpującym przeglądzie najnowszej literatury. WYNIKI I WNIOSKI: Biblioteki akademickie powinny reagować na pojawienie się badań 2.0, wypełniając nisze w usługach, które temu typowi badań zapewniają inne jednostki akademickie. OGRANICZENIA BADAŃ: Zasadniczo w przedstawionych rozważaniach wykorzystano jedynie piśmiennictwo, które ukazało się po 2015 r. ZASTOSOWANIA PRAKTYCZNE: Zadania wskazane w niniejszym artykule nie muszą wydawać się pilne dzisiaj, ale prawdopodobieństwo, że w przyszłości staną się imperatywem jest wysokie. ORYGINALNOŚĆ?WARTOŚĆ POZNAWCZA: Zagadnienia wskazane w niniejszym artykule już dzisiaj są częścią codziennych dobrych praktyk w wielu krajach.







Physical description




  • Institute of Learning Technologies, Eszterházy Károly University in Jászberény, Hungary


  • ACRL (2000). Information Literacy Competency Standards for Higher Education. Chicago, IL.: Association of College and Research Libraries.
  • ACRL (2015). Framework for Information Literacy for Higher Education. Chicago, IL.: Association of College and Research Libraries.
  • ANDS (2017). Data citation [online]. Australian National Data Service, [09.04.2017], http://www.ands.org.au/working-with-data/citation-and-identifiers/data-citation
  • Boyd, D.; Crawford, K. (2012). Critical questions for big data: Provocations for a cultural, technological,and scholarly phenomenon. Information, Communication & Society, 15(5), 662–679.
  • Briney, K. (2016). Strategic planning for research data services. Bulletin of the Association for InformationScience and Technology, 42(4), 39–41.
  • Bruce, C. S. (2008). Informed learning. Chicago, IL: American Library Association.
  • Brydges, B.; Clarke, K. (2015). Is it time to re-envision the role of academic librarians in facultyresearch? [online] Library Connect, 13(7), [09.04.2017] http://libraryconnect.elsevier.com/articles/2015–07/it-time-re-envision-role-academic-librarians-faculty-research
  • Calzada Prado, J.; Marzal, M. Á. (2013). Incorporating Data Literacy into Information LiteracyPrograms: Core Competencies and Contents. Libri, 63(2), 123–134.
  • Cao, L. (2016). Data science: nature and pitfalls. IEEE Intelligent Systems, 31(5), 66–75.
  • Chao, T. (2015). Mapping methods metadata for research data. International Journal of Digital Curation 10(1), 82–94.
  • Carter, D.; Sholler, D. (2016). Data science on the ground: Hype, criticism, and everyday work. Journal of the Association for Information Science and Technology 7(10), 2309–2319.
  • Christensen-Dalsgaard, B. et al (2012), Ten recommendations for libraries to get started with research data management. [online], LIBER, [09.04.2017] http://www.libereurope.eu/news/ten-recommendations-for-libraries-to-get-started-with-research-data-management
  • CIBER (2016). Early career researchers: the harbingers of change? Final report from CIBER. Year 1[online], CIBER-Research.UK, [09.04.2017], http://ciber-research.eu/download/20161120-ECR_Year_1_final_report_071116.pdf
  • Crusoe, D. (2016). Data Literacy defined pro populo: To read this article, please provide a little information.The Journal of Community Informatics, 12(3), 27–46.
  • DATACITE (2016a). Why is it so important to cite data? [online]. DataCite, [09.04.2017], https://www.datacite.org/cite-your-data.html
  • DATACITE, (2016b). Metadata Schema 4.0 [online]. DataCite, [09.04.2017], https://schema.datacite.org/
  • DCC (2015). What is digital curation? [online]. London: Digital Curation Centre [09.04.2017] http://www.dcc.ac.uk/digital-curation/what-digital-curation
  • DGI (2017). The DGI Data Governance Framework. [online]. London: Data Governance Institute,[09.04.2017], http://www.datagovernance.com/dgi-data-governance-framework/
  • ECAR (2015). The Compelling Case for Data Governance. [online]. EDUCAUSE ECAR Working Group [09.04.2017], http://www.educause.edu/library/resources/compelling-case-data-governance
  • Eaker, C. (2014). Educating researchers for effective data management. Bulletin of the American Society for Information Science and Technology, 40(3), 45–46.
  • Erway, R; Horton, L.; Nurnberger, A.; Otsuji, R.; Rushing, A. (2015). Building Blocks: Laying the Foundation for a Research Data Management Program. Dublin, Ohio: OCLC Research [online], OCLC [09.04.2017], http://www.oclc.org/content/dam/research/publications/2016/oclcresearch-datamanagement-building-blocks-2016.pdf
  • Giarlo, M. (2013). Academic Libraries as Quality Hubs. Journal of Librarianship and Scholarly Communication, 1(3), 1–10.
  • Goben, A.; Raszewski, R. (2015). Research data management self-education for librarians: a webliography [online]. Issues in Science and Technology Librarianship 82, [09.04.2017], http://www.istl.org/15-fall/internet2.html
  • Higman, R.; Teperek, M.; Kingsley, D. (2017). Creating a Community of Data Champions. bioRxiv, 104661, DOI 10.1101/104661
  • IBM (2012). Successful information governance through high-quality data. Somers, NY: IBM Corporation.
  • Jackman, L. W.; Weiner, S. A. (2017). The rescinding of the ACRL 2000 Information Literacy Competency Standards for Higher Education–Really? College & Undergraduate Libraries, 24(1), 117–119.
  • Jahnke, L.; Asher, A.; Keralis, S. D. (2012). The problem of data. Washington, DC: Council on Library and Information Resources.
  • Khatri, V.; Brown, C. V. (2010). Designing data governance. Communications of the ACM, 53(1), 148–152.
  • Koltay, T. (2015a). Data literacy: In search of a name and identity. Journal of Documentation, 71(2), 401–415.
  • Koltay, T. (2015b). Research 2.0, research data services and academic libraries. Praktyka i Teoria Informacji Naukowej i Technicznej, 23(4), 3–12.
  • Koltay, T. (2016a). Are you ready? Tasks and roles for academic libraries in supporting Research 2.0. New Library World, 117(1–2), 94–104.
  • Koltay, T. (2016b). Data governance, data literacy and the management of data quality, IFLA Journal, 42(4), 303–312.
  • Koltay, T.; Špiranec, S.; Z. Karvalics, L. (2015). The shift of information literacy towards research 2.0. The Journal of Academic Librarianship, 41(1), 87–93.
  • Kouper, I. (2016). Professional participation in digital curation. Library & Information Science Research, 38(3), 212–223.
  • LERU (2013). LERU Roadmap for Research Data. Leuven: League of European Research Universities Research Data Working Group [online]. LERU [29.08.2017], http://www.leru.org/index.php/public/publications/year/2013/
  • Lyon, L.; Mattern, E. (2016). Education for real-world data science roles (Part 2): A translational approach to curriculum development. International Journal of Digital Curation, 11(2), 13–26.
  • Lyon, L.; Mattern, E.; Acker, A.; Langmead, A. (2015). Applying translational principles to data science curriculum development [online]. In: iPres Conference Proceedings, Chapel Hill, North Carolina, 2–6 November 2015, D-Scholarship, Institutional Repository of the University of Pittsburgh [29.08.2017], http://d-scholarship.pitt.edu/27159/
  • Maybee, C.; Zilinski, L. (2015). Data informed learning: A next phase data literacy framework for higher education. Proceedings of the Association for Information Science and Technology, 52(1), 1–4.
  • McLure, M.; Level, A.V.; Cranston, C.L.; Oehlerts, B.; Culbertson, M. (2014). Data curation: A study of researcher practices and needs. portal: Libraries and the Academy, 14(2), 139–164.
  • Mooney, H.; Newton, M. P. (2012). The anatomy of a data citation: Discovery, reuse, and credit. Journal of Librarianship and Scholarly Communication, 1(1), 1–14.
  • Nelson, N.; Huffman, J. (2015). Predatory journals in library databases: How much should we worry? The Serials Librarian 69(2), 169–192.
  • Nicholas, D.; Clark, D.; Herman, E. (2016). ResearchGate: Reputation uncovered. Learned Publishing, 29(3), 173–182.
  • Nielsen, H. J.; Hjørland, B. (2014). Curating research data: the potential roles of libraries and information professionals. Journal of Documentation, 70(2), 221–240.
  • Partlo, K., Symons, D., & Carlson, J. D. (2015). Revolutionary or evolutionary? Making research data management manageable. In: B. L. Eden (ed.) Creating Research Infrastructures in the 21st--Century Academic Library: Conceiving, Funding, and Building New Facilities and Staff. Lanham (MD): Rowman & Littlefield. 175–201.
  • Pasquetto, I. V.; Sands, A. E.; Borgman, C. L. (2015). Exploring openness in data and science: What is “open,” to whom, when, and why? Proceedings of the Association for Information Science and Technology, 52(1), 1–2.
  • Patel, D. (2016). Research data management: a conceptual framework. Library Review, 65(4–5), 226–241.
  • Peters, I.; Bar-Ilan, J. (2014). Informetrics, bibliometrics, altmetrics: What is it all about? Proceedings of the American Society for Information Science and Technology, 51(1), 1–4.
  • Poole, A. H. (2017). The conceptual ecology of digital humanities. Journal of Documentation, 73(1), 91–122.
  • Rice, R.; Southall, J. (2016). The data librarian’s handbook. London: Facet Publishing.
  • Ridsdale, Ch.; Rothwell, J.; Smit, M., Ali-Hassan, H.; Bliemel, M.; Dean, I.; Kelley, D.; Matwin, S.; Wuetherick, B. (2015). Strategies and best practices for data literacy education: Knowledge synthesis report. Halifax, NS: Dalhousie University [online], Mike Smit, [09.04.2017], http://www.mikesmit.com/wp-content/papercite-data/pdf/data_literacy.pdf
  • Robinson, L. (2016). Editorial. Alexandria, 26(2), 73–76.
  • Sharma, S.; Qin, J. (2014). Data management: Graduate student’s awareness of practices and policies. Proceedings of the Association for Information Science and Technology, 51(1), 1–3.
  • Tenopir, C.; Allard, S.; Sinha, P.; Pollock, D.; Newman, J.; Dalton, E.; Frame, M.; Baird, L. (2016). Data management education from the perspective of science educators. International Journal of Digital Curation, 11(1), 232–251.
  • Tenopir, C.; Pollock, D.; Allard, S.; Hughes, D. (2016). Research data services in European and north American libraries: Current offerings and plans for the future. Proceedings of the Association for Information Science and Technology, 53(1), 1–6.
  • University of Edinburgh (2015). Why is data management important? Edinburgh: University of Edinburgh [online], [29.08.2017], http://www.ed.ac.uk/schools-departments/information-services/research-support/data-management/why-manage-data
  • Watkinson, A.; Nicholas, D.; Thornley, C.; Herman, E.; Jamali, H. R.; Volentine, R.; Allard, S.; Levine, K.; Tenopir, C. (2016). Changes in the digital scholarly environment and issues of trust: An exploratory, qualitative analysis. Information Processing & Management, 52(3), 446–458.
  • York, J.; Gutmann, M.; Berman, F. (2016), What Do We Know About The Stewardship Gap? [online]. Ann Arbor, MI: University of Michigan, [29.08.2017] http://hdl.handle.net/2027.42/122726
  • Zilinski, L. D.; Nelson, M. S. (2014). Thinking critically about data consumption: Creating the data credibility checklist. Proceedings of the American Society for Information Science and Technology, 51(1), 1–4.

Document Type

Publication order reference



YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.