PL EN


2012 | 13 | 1 | 95-106
Article title

Cumulative Sum Control Charts for Truncated Normal Distribution under Measurement Error

Content
Title variants
Languages of publication
EN
Abstracts
EN
In the present paper Cumulative Sum Control Chart (CSCC) for the truncated normal distribution under measurement error (r) is discussed. The sensitivity of the parameters of the V-Mask and the Average Run Length (ARL) is studied through numerical evaluation for different values of r.
Year
Volume
13
Issue
1
Pages
95-106
Physical description
Contributors
author
  • Vikram University
author
  • Vikram University
author
  • Madhav Science College
References
  • A.B. YEH, D.K. LINAND and C. VENKATARAMANI. (2004).Unified CUSM Charts for Monitoring Process Mean and Variability, Quality Technology and Quantitative Management, Vol.1, No.1, pp.65-86.
  • CHANG, M.N. (1990). Weak Convergence of a Self Consistent Estimator of the Survival Function with Doubly Censored Data, Annals of Statistics, 18: 391-404.
  • G.NENES and G. TAGARAS. (2010). Evaluation of CUSUM charts for Finite- Horizon Processes, Communication in Statistics-Simulation and Computation, Vol.39, Issue 3, pp.578-597.
  • HUNTER, J.S. (1986). The Exponentially Weighted Moving Average ,Journal of Quality Technology, 18:203-210.
  • J. H. RYU, H. WAN and S.KIM. (2010). Optimal Design of a CUSUM Chart for a Mean Shift Of Unknown Size, Journal of Quality Technology, Vol.42, No.3, pp.1-16.
  • JOHNSON, N.L. and LEONE, F.C. (1962). Cumulative Sum Control Charts: Mathematical Principles Applied to their Construction and Use Part II, Industrial Quality Control XIV(2), pp.22-28.
  • KEIDING, N. and GILL, R.D. (1987). Research Report No. 87/3, Statistical Research Unit, University Copenhagen, Denmark.
  • M.A.A. COX. (2009). Control charts for monitoring observations from a truncated normal distribution, Journal of Risk Finance, Vol. 10 Iss: 3, pp.288 – 304.
  • MOOD, A.M. & GRAYBILL, F.A. (1963). Introduction to the Theory of Statistics; Mc Graw Hill Book Co .Inc. second Edition.
  • NELSON, W. (1990). Hazard Plotting of Left Truncated Life data, Journal of Quality Technology, 22:230-238.
  • O,A.GRIGG and D.J. SPIEGELHALTER. (2008). An Empirical Approximation to the Null Unbounded Steady-State Distribution of the Cumulative Sum Statistic, Technometrics, 50(4):501-511.
  • PATEL, M.N. and GAJJAR, A.V. (1994). Cumulative Sum Control Charts for Intervened Geometric Distribution, International Journal of Management and Systems,10(2):181-188.
  • SCHEIDER, H. (1986). Truncated and Censored Samples from Normal Distribution, Marcel Dekker, New York.
  • WOODROOFE, M. (1985). Estimating a Distribution Function with Truncated Data, Annals of Statistics, 13: 163-177.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.desklight-1ce9ca62-151e-418c-8773-89c13369213b
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.