PL EN


2014 | 11(15) | 13-24
Article title

On the importance of affective dimensions of mathematics education

Content
Title variants
Languages of publication
PL EN
Abstracts
EN
In one of his latest articles, Fortus (2014), points out that “when one considers the centrality of affect to teaching and learning and the broad range of topics that are related to affect, it is concerning that it has received relatively so little attention” (Fortus 2014, p. 821). In order to support his position, he provides an overview of the research on affect in science education that has been published in several journals (JRST, SciEd, and IJSE) between 2001 and 2011. The author also hypothesizes why affect has been under-attended to by the science education research community so far. And the conclusion he arrives at is that affect remains in the shadow of researchers’ attention partly due to the existing “international trend towards standardization of schooling and high-stakes testing” (p. 822). The main purpose of this article is to emphasize that affect does play an important role also in learning mathematics and for this reason it should be considered as one of the core dimensions of mathematics education. The first part of this article provides examples of two phenomena: math anxiety and the underachievement syndrome in learning mathematics, where affective determinants are unquestionable. Subsequently, we shift the focus from these particular issues to the general description of what affect is, what meaningful concepts it contributes in the field of research on mathematics education, and how the research community can benefit from the approach it promotes. Finally, we present some new directions for researchers and teachers that may result in an increase of the quality and efficiency of both teaching and learning mathematics.
Year
Issue
Pages
13-24
Physical description
Contributors
References
  • Ashcraft M. H. (2002). Math anxiety: Personal, educational, and cognitive consequences. Current directions in psychological science. No 11(5), pp. 181-185.
  • Beilock S.L., Willingham D.T. (2014). Math Anxiety: What can teachers do to reduce it? American Educator. No 43, pp. 28-32.
  • Cieślikowska J., Limont W. (2010). Obraz ucznia zdolnego w potocznych koncepcjach nauczycieli. In: Osobowościowe i środowiskowe uwarunkowania rozwoju ucznia zdolnego. Tom II. Toruń, pp. 11-25.
  • DeBellis V.A., Goldin G.A. (2006). Affect and meta-affect in mathematical problem solving: A representational perspective. Educational Studies in Mathematics. No 63(2), pp. 131-147.
  • Del Siegle D., McCoach B. (2005). Making a difference: Motivating gifted students who are not achieving. Teaching exceptional children. No 38(1), pp. 22-27.
  • Dyrda B. (2000). Syndrom Nieadekwatnych Osiągnięć jako niepowodzenie szkolne uczniów zdolnych. Diagnoza i terapia. Kraków.
  • Dyrda B. (2007). Zjawisko niepowodzeń szkolnych uczniów zdolnych: rozpoznawanie i przeciwdziałanie. Kraków.
  • Dyrda B. (2012). Edukacyjne wspieranie rozwoju uczniów zdolnych. Studium społeczno-pedagogiczne. Warszawa.
  • Fortus D. (2014). Attending to affect. Journal of Research in Science Teaching. No 51(7), pp. 821-835.
  • Goldin G. (1999). Affect, meta-affect, and mathematical belief structures. In:
  • E. Pehkonen & G. Törner (Eds.). Mathematical beliefs and their impact on teaching and learning of mathematics. Proceedings of the Workshop in Oberwolfach, Germany, pp. 37-42.
  • Kozielecki J. (1987). Koncepcja transgresyjna człowieka. PWN. Warszawa.
  • Kozielecki J. (1997). Transgresja i kultura. Wydawnictwo Akademickie Żak. Warszawa.
  • Lyons I.M., Beilock S.L. (2012a). Mathematics anxiety: separating the math from the anxiety. Cerebral Cortex. No 22(9), pp. 2102-2110.
  • Lyons I.M., Beilock S.L. (2012b). When math hurts: math anxiety predicts pain network activation in anticipation of doing math.
  • McAnallen R.R. (2010). Examining mathematics anxiety in elementary classroom teachers (Doctoral dissertation, University of Connecticut).
  • McLeod D.B. (1992). Research on affect in mathematics education: A reconceptualization. Handbook of research on mathematics teaching and learning, pp. 575- 596.
  • McLeod D.B. (1999). Mathematical beliefs and curriculum reform. In: Conference on Mathematics Beliefs and Their Impact on Teaching and Learning of Mathematics. Mathematical Research Institute, Oberwolfach, Germany, pp. 90-95.
  • Moscucci M. (2007). About Mathematical Belief Systems Awareness. In: Proceedings of CERME5, pp. 298-308.
  • Op’t Eynde P., De Corte E., Verschaffel L. (1999). Balancing between Cognition and Affect: Students’ Mathematics-Related Beliefs and Their Emotions during Problem-Solving. In: Conference on Mathematics Beliefs and Their Impact on Teaching and Learning of Mathematics, Mathematical Research Institute, Oberwolfach, Germany, pp. 97-105.
  • Op’t Eynde P., De Corte E., Verschaffel L. (2002). Framing students’ mathematics- related beliefs. In: Beliefs: A hidden variable in mathematics education?Springer Netherlands, pp. 13-37.
  • Park D., Ramirez G., Beilock S.L. (2014). The role of expressive writing in math anxiety. Journal of Experimental Psychology: Applied. No 20(2), p. 103.
  • Pieronkiewicz B. (2015). Affective transgression as the core objective of mathematics education. Philosophy of Mathematics Education Journal 29. In Press.
  • Reis S.M., McCoach D.B. (2002). Underachievement in gifted and talented students with special needs. Exceptionality. No 10(2), pp. 113-125.
  • Rimm S. (1994). Bariery szkolnej kariery. Dlaczego dzieci zdolne mają słabe stopnie? Warszawa.
  • Rimm S. (1995) Why Bright Kids Get Poor Grades and What You Can Do About It. New York.
  • Rimm S.B. (1997). An underachievement epidemic. Educational Leadership. No 54(7), pp. 18-22.
  • Salamanca Conference (1994). Report; electronic document. Retrieved from: http://www.cie.gov.pl/HLP/files.nsf/a50f2d318bc65d9dc1256e7a003922ed/e379060f76e05f2fc1256e99004acf0b? Open Document [retrieved: 21.12.2013].
  • Schoenfeld A.H. (1983). Beyond the purely cognitive: Belief systems, social cognitions, and metacognitions as driving forces in intellectual performance. Cognitive science. No 7(4), pp. 329-363.
  • Snow R.E., Corno L., Jackson III D. (1996). Individual differences in affective and conative functions. In D.C. Berliner, R.C. Calfee (Eds.). Handbook of Educational Psychology. New York: Simon & Schuster Macmillan, pp. 243-310.
  • Tobias S., Weissbrod C. (1980). Anxiety and mathematics: an update. Harvard Educational Review 50(1), pp. 63-70.
  • Tokarz A., Słabosz A. (2001). Cechy uczniów preferowane przez nauczycieli jako wymiar aktywności twórczej w szkole. Cz. I. Style twórczego zachowania badanych nauczycieli. Edukacja. Studia. Badania. Innowacje 2(74). Cz. II. Uczeń idealny i twórczy w preferencjach badanych nauczycieli. Edukacja. Studia. Badania. Innowacje. No 3(75).
  • Underachiever. Merriam-Webster.com. Retrieved: 21.12.2013 from http://www.merriam-webster.com/dictionary/underachiever.
  • Underachiever (n.d.). Dictionary.com Unabridged. Retrieved 21.12.2013 from Dictionary.com website: http://dictionary.reference.com/browse/underachiever.
  • Wasyluk-Kuś H. (1971). O nauce szkolnej uczniów zdolnych. Warszawa.
  • Warnock Report (1978). Special educational needs. Retrieved from: http://www.educationengland.org.uk/documents/warnock/warnock1978.html [retrieved: 21.12.2013].
  • Yeager D.S., Walton G.M. (2011). Social-psychological Interventions in Education. They’re Not Magic. Review of Educational Research. No 81(2), pp. 267-301.
  • Young C.B., Wu S.S., Menon V. (2012). The neurodevelopmental basis of math anxiety. Psychological Science. No 23(5), pp. 492-501.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.desklight-1cfd98db-6a7d-4414-9460-16739138c4f9
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.