PL EN


Journal
2017 | 4(52) | 65-78
Article title

Czerwone Pogranicze: energia ucieleśniona marsjańskiej architektury

Content
Title variants
EN
The Red Frontier: the embodied energy of Martian architecture
Languages of publication
PL EN
Abstracts
PL
Celem publikacji było przedstawienie zagadnienia określania kosztów tworzenia ekstremalnej architektury kosmicznej za pomocą autonomicznych robotów na przykładzie teoretycznego scenariusza załogowej misji na Marsa zawartego w dokumencie NASA Mars Reference Mission. Autor opisuje strategie pozwalające określić energię ucieleśnioną zawartą w architekturze stworzonej z lokalnych materiałów za pomocą addytywnych procesów produkcyjnych, czyli druku 3D. Energia ucieleśniona jest sumą energii włożonej w proces wytworzenia dowolnej usługi bądź dobra, w tym energii zużytej do pozyskania surowców do jego wytworzenia, transportu. W ramach omawianej przez autora strategii zakresy prac oraz zadań zostały pogrupowane w cztery działy pokrywające się ze strukturą rozgrywki strategicznych gier komputerowych z gatunku 4X. Gry komputerowe 4X biorą swoją nazwę od skrótowego opisu elementów prowadzenia rozgrywki: explore, exploit, expand, exterminate, co w wolnym tłumaczeniu znaczy: eksploracja, eksploatacja, ekspansja, eksterminacja. W trakcie trwania gry użytkownik skupia się na zarządzaniu i rozwijaniu cywilizacji lub miasta, gdzie głównym jego zadaniem jest pozyskiwanie i zarządzanie zasobami. Taka struktura została uznana przez autora za obiecujący punkt wyjścia strategii optymalizacji procesu budowy architektury marsjańskiej przez agentów robotycznych. Wspomniana symulacja mogłaby zostać użyta do stworzenia narzędzia do optymalizacji procedur na potrzeby realnej misji na Marsa przy wykorzystaniu jako wyznacznika energii ucieleśnionej. Takie narzędzie miałoby szanse obniżyć koszty podczas pierwszych załogowych misji na inne planety. W dalszej perspektywie stosowanie takiego rozwiązania do gromadzenia danych o energii ucieleśnionej pozwoli na zachowanie całości danych o odcisku ekologicznym kolonizacji Marsa.
EN
The purpose of this publication is to present the problem of determining the costs of creating extreme space architecture using autonomous robots based on the example of the theoretical manned mission to Mars scenario contained in the NASA Mars Reference Mission document. The author focuses on strategies that can determine the embodied energy contained in architecture made from local materials, using additive manufacturing processes – 3D printing. Embodied energy is the sum of the energy invested in the process of producing any service or good, including the energy consumed to obtain raw materials for its production and transport. Procedures to optimise the work of robotic agents will be crucial during manned Mars missions with limited access to resources, including electricity. Using robots to work on the surface will precisely determine the amount of energy used to complete the given job, which will enable optimisation and the determination of the embodied energy of these works. As part of the strategy discussed by the author, the scope of work and tasks are grouped into four divisions that coincide with the gameplay structure of 4X-type strategic computer games. 4X computer games get their name from the brief description of the gameplay elements: “explore, exploit, expand, exterminate”. During the game, the user focuses on managing and developing a civilisation or city, where resource acquisition and management play a central role. The author considers such a structure to be a promising starting point for the strategy of optimising the process of building a Martian architecture using robotic agents. Procedures that can determine the embodied energy of the described processes have been grouped into the sections Exploration, Extraction, Exploitation, and Expansion, and have been included in the simulation model for the manned mission to Mars in the form of a 4X-type computer game prototype. This simulation could be used to create a tool for optimising procedures for the needs of an actual mission to Mars, using embodied energy as an indicator. Such a tool would have the potential to reduce costs during the first manned missions to other planets. In the longer term, the use of such a solution for the collection of data on embodied energy will preserve all environmental footprint data of the colonisation of Mars.
Journal
Year
Issue
Pages
65-78
Physical description
Contributors
  • Wydział Architektury Politechniki Wrocławskiej
References
  • Kardashev N., Transmission of Information by Extraterrestrial Civilizations, „Soviet Astronomy” 1964, Vol. 8, No. 2, 217–221.
  • Kardashev N., On the Inevitability and the Possible Structures of Supercivilizations, [w:] M.D. Papagiannis (ed.), The search for extraterrestrial life: Recent developments. Proceedings of the 112th Symposium of the International Astronomical Union Held at Boston University, Boston, Mass., U.S.A., June 18–21, 1984, D. Reidel Publishing, Dordrecht 1985, 497–504.
  • Sagan C., Cosmic Connection: An Extraterrestrial Perspective, Dell Publishing Company, New York 1975.
  • Parmesan C., Yohe G., A globally coherent fingerprint of climate change impacts across natural systems, „Nature” 2003, No. 421, 37–42.
  • Hammond G., Jones C., Inventory of Carbon & Energy (ICE), University of Bath, 2008, http://www.organicexplorer.co.nz/site/organicexplore/files/ICE%20Version%201.6a.pdf [accessed: September 2017].
  • NASA, Journey To Mars, https://www.nasa.gov/content/nasas-journey-to-mars [accessed: September 2017].
  • Zubrin R., Richard W., The Case for Mars: the plan to settle the red planet and why we must, Touchstone by Simon & Schuster, New York 1997.
  • The Mars Surface Reference Mission: A Description of Human and Robotic Surface Activities, S.J. Hoffman (ed.), NASA 2001, http://www.nss.org/settlement/mars/2001-NASA-MarsSurfaceReferenceMission.pdf [accessed: September 2017].
  • Mars Architecture Steering Group, Human Exploration of Mars Design Reference Architecture 5.0, B.G. Drake (ed.), NASA 2009, https://www.nasa.gov/pdf/373665main_NASA-SP-2009-566.pdf [accessed: September 2017].
  • Mars Destination Operations, L. Toups (ed.), NASA 2014, https://www.lpi.usra.edu/lunar/strategies/HAT_Mars-DOT-2013-Final-Report.pdf [accessed: September 2017].
  • ESA, http://www.esa.int/Highlights/Lunar_3D_printing, 2015 [accessed: September 2017].
  • NASA 3D-Printed Habitat Challenge, https://americamakes.us/wpcontent/themes/3dchallenge2015/assets/Design_Competition_Rules.pdf, 2015 [accessed: September 2017].
  • Huntsberger T., Pirjanian P., Schenker P.S., Robotic outposts as precursors to a manned Mars habitat, „AIP Conference Proceedings” 2001, Vol. 552, Iss. 1, https://www.researchgate.net/publication/2801344_Robotic_Outposts_as_Precursors_to_a_Manned_Mars_Habitat [accessed: September 2017].
  • Huntsberger T., Rodriguez G., Schenker P.S., Robotics challenges for robotic and Human Mars Exploration, Jet Propulsion Laboratory, Pasadena 2012, http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.83.3242&rep=rep1&type=pdf [accessed: September 2017].
  • Fong T., Thorpe C., Baur C., Collaboration, Dialogue, and Human-Robot Interaction, [w:] 10th International Symposium of Robotics Research, Lorne, Victoria, Australia, Springer-Verlag, Pittsburgh, PA 2001, https://pdfs.semanticscholar.org/f617/005acc94c64f6f8fed991f9949774257ae8f.pdf [accessed: September 2017].
  • Space is More design team, www.spaceismore.com [accessed: September 2017].
  • 4x Strategies, https://en.wikipedia.org/wiki/4X [accessed: September 2017].
  • Civilization, https://en.wikipedia.org/wiki/Civilization_(video_game) [accessed: September 2017].
  • Colonization, https://en.wikipedia.org/wiki/Sid_Meier%27s_Colonization [accessed: September 2017].
  • Pharaoh, https://en.wikipedia.org/wiki/Pharaoh_(video_game) [accessed: September 2017].
  • Master of Orion II, https://en.wikipedia.org/wiki/Master_of_Orion_II [accessed: September 2017].
  • Meyer Th.R., McKay C., The resources of Mars for human settlement, „Journal of the British Interplanetary Society” 1989, Vol. 42, 147–160, https://www.researchgate.net/publication/252478654_Using_the_Resources_of_Mars_for_Human_Settlement [accessed: September 2017].
  • Schwenzer S.P., Abramov O., Allen C.C. et al., Gale Crater: Formation and postimpact hydrous environments, „Planetary and Space Science” 2012, No. 70, Iss. 1, 84–95, http://www.sciencedi rect.com/science/journal/00320633/70 [accessed: September 2017].
  • Golombek M., Grant J., Vasavada A.R. et al., Final Four Landing Sites For The Mars Science Laboratory, LPI Contribution No. 1608, 1520, Texas 2011, https://www.lpi.usra.edu/meetings/lpsc2011/pdf/1520.pdf [accessed: September 2017].
  • Arvidson R.E., Bellutta P., Calef F. et al., Terrain physical properties derived from orbital data and the first 360 sols of Mars Science Laboratory Curiosity rover observations in Gale Crater, „Journal of Geophysical Research: Planets” 2014, Vol. 119, 1322–1344, http://onlinelibrary.wiley.com/doi/10.1002/2013JE004605/epdf [accessed: September 2017].
  • Milliken R.E., Ewing R., Fischer W., Hurowitz J., Clay and Sulfate-Cemented Sandstones in Gale Crater: Evidence from Orbital Data, [w:] 44th Lunar and Planetary Science Conference, The Woodlands, Texas, March 18–22, 2013, 1243, https://www.lpi.usra.edu/meetings/lpsc2013/pdf/1243.pdf [accessed: September 2017].
  • Milliken R., MSL Science Team, Mineral Mapping of Gale Crater Using Orbital Data: Results From Visible Near Infrared Reflectance Spectroscopy, „Search and Discovery” 2014, Article #51013, http://www.searchanddiscovery.com/documents/2014/51013milliken/ndx_milliken.pdf [accessed: September 2017].
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.desklight-21e159b0-5eab-4e73-9ab5-521a1e99d186
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.