Journal

Article title

Content

Full texts:

Title variants

Languages of publication

Abstracts

Journal

Year

Volume

Issue

Pages

19–61

Physical description

Dates

published

2017-03-15

online

2016-07-19

Contributors

author

- Naval Research Laboratory Code 5543 Washington, DC 20375, USA, gerard.allwein@nrl.navy.mil

author

- Dept. of Computer Science University of Missouri Columbia, Missouri, USA, harrisonwl@missouri.edu

author

- Dept. of Computer Science University of Missouri Columbia, Missouri, USA

References

- Adámek, J., and J. Rosický, Locally Presentable and Accessible Categories, Lecture Note Series 189, London Mathematical Society, 1994. DOI: 10.1017/CBO9780511600579
- Allwein, G., H. Demir, and L. Pike, “Logics for classes of Boolean monoids”, Journal of Logic, Language and Information, 13, 3 (2004): 241–266. DOI: 10.1023/B:JLLI.0000028336.64373.f6
- Allwein, G., W. Harrison, and D. Andrews, “Simulation logic”, Logic and Logical Philosophy, 23, 3 (2014): 277–299. DOI: 10.12775/LLP.2013.027
- Allwein, G., and W.L. Harrison, “Distributed modal logic”, pages 331–362 in Katalin Bimbó (ed.), J. Michael Dunn on Information Based Logic, Outstanding Contributions to Logic, Springer-Verlag, 2016. DOI: 10.1007/978-3-319-29300-4_16
- Anderson, A.R., and N.D. Belnap, Jr., Entailment: The Logic of Relevance and Necessity, volume I, Princeton University Press, 1975.
- Birkhoff, G., Lattice Theory, Third Edition, American Mathematical Society, 1967.
- Birkhoff, G., and J.D. Lipson, “Heterogeneous algebras”, Journal of Computational Theory, 8 (1968): 115–133.
- Blackburn, P., M. de Rijke, and Y. Venema, Modal Logic, Cambridge Tracts in Theoretical Computer Science, No. 53, Cambridge University Press, 2001. DOI: 10.1017/CBO9781107050884
- Chin, L.H., and A. Tarski, “Distributive and modular laws in the arithmetic of relation algebras”, University of California Publications in Mathematics, 1951.
- Dunn, J.M., “Gaggle theory: An abstraction of Galois connections and residuation with applications to negation and various logical operations”, pages 31–51 in Logics in AI, Proceedings European Workshop JELIA, LNCS 478, Springer-Verlag, 1990. DOI: 10.1007/BFb001843
- Dunn, J.M., and G. Hardegree, Algebraic Methods in Philosophical Logic, Oxford Logic Guides 41, Oxford University Press, 2001.
- Hoare, C.A.R., and J. He, “A weakest pre-specification”, Inform. Process.
- Jónsson, B., and A. Tarski, “Boolean algebras with operators. Parts 1 and 2”, American Journal of Mathematics, 73–74 (1951–1952): 891–939, 127–162. DOI: 10.2307/2372074
- Jónsson, B., and C. Tsinakis, “Relation algebras as residuated Boolean algebras”, Algebra Universalis, 30 (1993): 469–478.
- Ng, K.C., “Relation algebras with transitive closure”, PhD thesis, University of California, Berkeley, 1984.
- Pratt, V.R., “Dynamic algebras as a well behaved fragment of relation algebras”, Chapter 5 in Proceedings, Algebra and Computer Science, Lecture Notes in Computer Science, Springer-Verlag, 1990. DOI: 10.1007/BFb0043079
- Routley, R., and R.K. Meyer, “The semantics of entailment”, pages 194–243 in H. Leblanc (ed.), Truth, Syntax, and Modality, Studies in Logic and the Foundations of Mathematics, North Holland, 1973. DOI: 10.1016/S0049-237X(08)71541-6
- Routley, R., R.K. Meyer, V. Plumwood, and R.T. Brady, Relevant Logics and Their Rivals, Ridgeview Publishing Company, 1982.
- Sahlqvist, H., “Completeness and correspondence in the first and second order semantics for modal logic”, pages 110–143 in Proceedings of the Third Scandanavian Logic Symposium, Uppsala, 1973, Studies in Logic and the Foundations of Mathematics, North-Holland Publishing Company, 1975. DOI: 10.1016/S0049-237X(08)70728-6
- Stone, M.H., “The theory of representation for Boolean algebras”, Transactions of the American Mathematical Society, 40 (1936): 37–111. DOI: 10.2307/1989664
- van Benthem, J., Modal Logic and Classical Logic, Bibliopolis, 1983.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.desklight-2237bb2e-486a-4121-9148-269267e802f7