2013 | 2(40) | 95-102
Article title

Podejście wielomodelowe analizy danych symbolicznych w ocenie pozycji produktów na rynku

Title variants
Ensemble learning for symbolic datain product positioning
Languages of publication
Product positioning is a wide range of business activities. Positioning is the process by which marketers try to create an image or identity in the minds of their target market for its product, brand, or organization. The main aim of the paper is to preset and apply ensemble learning for symbolic data in cluster analysis in order to evaluate a product position. Empirical part of the paper presents the application of co-occurrence matrix and bagging algorithm in ensemble learning for symbolic data (car market data was used). These two approaches reached almost the same results when considering adjusted Rand index.
Physical description
  • Uniwersytet Ekonomiczny we Wrocławiu
  • Bock H.-H., Diday E. (red.), Analysis of Symbolic Data. Explanatory Methods for Extracting Statistical Information from Complex Data, Springer Verlag, Berlin-Heidelberg 2000.
  • Billard L., Diday E. (red.), Symbolic Data Analysis. Conceptual Statistics and Data Mining, John Wiley & Sons, Chichester 2006, s. 7-30.
  • De Carvalho F.A.T., Lechevallier, De Melo F.M., Partitioning hard clustering algorithms based on multiple dissimilarity matrices, „Pattern Recognition” 2012, no. 45(1), s. 447-464.
  • Diday E., Noihomme-Fraiture M., Symbolic Data Analysis and the SODAS Software, Wiley, Chichester 2008.
  • Dudek A., Metody analizy danych symbolicznych w badaniach ekonomicznych, Wyd. UE we Wrocławiu, Wrocław 2013.
  • Dudoit S., Fridlyand J., Bagging to improve the accuracy of a clustering procedure, „Bioinformatics” 2003, vol. 19, no. 9, s. 1090-1099.
  • Fred A.L.N., Jain A.K., Combining multiple clustering using evidence accumulation, „IEEE Transactions on Pattern Analysis and Machine Intelligence” 2005, vol. 27, s. 835-850.
  • Gatnar E., Podejście wielomodelowe w zagadnieniach dyskryminacji i regresji, Wydawnictwo Naukowe PWN, Warszawa 2008.
  • Gatnar E., Walesiak M. (red.), Metody statystycznej analizy wielowymiarowej w badaniach marketingowych, Wyd. AE we Wrocławiu, Wrocław 2004.
  • Hornik K., A CLUE for CLUster ensembles, „Journal of Statistical Software” 2005, vol. 14, s. 65-72.
  • Kotler P., Marketing, Rebis, Poznań 2005.
  • Kotler P., Armstrong G., Saunders J., Wong V., Marketing. Podręcznik europejski, PWE, Warszawa 2002.
  • Leisch F., Bagged clustering, „Adaptive Information Systems and Modeling in Economics and Management Science”, Working Papers 1999, SFB, 51.
  • Norihomme-Fraiture M., Brito P., Far beyond the classical data models: symbolic data analysis, “Statistical Analysis and Data Mining” 2011, vol. 4, Issue 2, s. 157-170.
  • Pełka M., Ensemble approach for clustering of interval-valued symbolic data, „Statistics in Transition” 2012, vol. 13, no. 2, s. 335-342.
  • Pełka M., Jefmański B., Zmienne symboliczne w badaniach marketingowych, „Marketing i Rynek” 2008, nr 2, s. 22-25.
  • Stanimir A. (red.), Analiza danych marketingowych. Problemy, metody, przykłady. Wyd. AE we Wrocławiu, Wrocław 2006.
  • Walesiak M., Statystyczna analiza wielowymiarowa w badaniach marketingowych, Wyd. AE we Wrocławiu, Wrocław 1993.
  • Zaborski A., Skalowanie wielowymiarowe w badaniach marketingowych, Wyd. AE we Wrocławiu, Wrocław 2001.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.