PL EN


Journal
2017 | 3 | 12 | 2001-2011
Article title

Choosing a Better Delay Line Medium between Single-Mode and Multi-Mode Optical Fibers: the Effect of Bending

Content
Title variants
Languages of publication
EN
Abstracts
EN
Optical fiber cables are materials whose core is made of silica and other materials such as chalcogenide glasses; they transmit a digital signal via light pulses through an extremely thin strand of glass. The light propagates and is being guided by the core which is surrounded by the cladding. Light travels in the optical fiber in the form of total internal reflection in the core of the fibers. The flexibility, low tensile strength, low signal loss, high bandwidth and other characteristics of optical fibers favors it for use as a delay medium in many applications. Another favorable characteristic of optical fiber delay lines is are their relative insensitivities to environmental effects and electromagnetic interferences. The immunity of optical fibers to interferences and their less weight added advantages to it for use as delay medium. Single-mode and multi-mode are the two most popular types of optical fibers. Single-mode fibers have good propagation and delay properties with a minimal loss that allows the signal to propagate in a large distance with insignificant distortion or attenuation. The percentage of power transmission of single-mode fibers is found to be higher than that of the multi-mode fibers. It is, therefore, a preferred type for use as a delay line. In this paper, relative studies of the two optical fibers modes, and the results of power input/output measurement of the two modes are presented with a view to coming up with a better type for use as a delay medium.
Journal
Year
Volume
3
Issue
12
Pages
2001-2011
Physical description
Dates
published
2017-12-15
Contributors
  • Federal University Birnin Kebbi
  • Kaduna State University
author
  • Kaduna State University
  • Universiti Tun Hussein Onn Malaysia
References
  • Al-Azzawi, A. (2017). Fiber optics: principles and advanced practices. Boca Raton: CRC Press.
  • Bamiedakis, N., Chen, J., Penty, R. V., & White, I. H. (2016). High-bandwidth and low-loss multimode polymer waveguides and waveguide components for high-speed board-level optical interconnects. Optical Interconnects XVI. doi: 10.1117/12.2212546
  • Bigot-Astruc, M., Molin, D., Sillard, P., Gooijer, F., & Jahannes, F. (2013). Bend-resistant multimode optical fiber. Retrieved from http://google.com/patents/EP2642322A1?cl=en
  • Chang, H., Luo, J., Gulgunje, P. V., & Kumar, S. (2017). Structural and Functional Fibers. Annual Review of Materials Research, 47(1), 331–359. doi: 10.1146/annurev-matsci-120116-114326
  • Colombe, Y., Slichter, D. H., Wilson, A. C., Leibfried, D., & Wineland, D. J. (2014). Single-mode optical fiber for high-power, low-loss UV transmission. Optics Express, 22(16), 19783. doi: 10.1364/oe.22.019783
  • Denoyer, G., Cole, C., Santipo, A., Russo, R., Robinson, C., Li, L., … Vulliet, N. (2015). Hybrid Silicon Photonic Circuits and Transceiver for 50 Gb/s NRZ Transmission Over Single-Mode Fiber. Journal of Lightwave Technology, 33(6), 1247–1254. doi: 10.1109/jlt.2015.2397315
  • Dong, L., Li, J., McKay, H., Fu, L., & Marcinkevicius, A. (2017). Glass large-core optical fibers. Retrieved from https://www.google.ch/patents/US9632243
  • Fadhali, M., Saktioto, Zainal, J., Munajat, Y., Ali, J., & Abdul Rahman, R. (2008). Mode matching for efficient laser diode to single mode fiber coupling. International Workshop and Conference on Photonics and Nanotechnology 2007. doi: 10.1117/12.799264
  • Fang, W., Lu, M., Liu, X., Gong, L., & Zhu, Z. (2015). Joint Defragmentation of Optical Spectrum and IT Resources in Elastic Optical Datacenter Interconnections. Journal of Optical Communications and Networking, 7(4), 314. doi: 10.1364/jocn.7.000314
  • Galvanauskas, A. (2004). High Power Fiber Lasers. Optics and Photonics News, 15(7), 42–47. doi: 10.1364/opn.15.7.000042
  • Gambling, W. A., Matsumura, H., & Ragdale, C. M. (1978). Field deformation in a curved single-mode fibre. Electronics Letters, 14(5), 130. doi: 10.1049/el:19780089
  • Gambling, W. A., Payne, D. N., & Matsumura, H. (1976). Radiation from curved single-mode fibres. Electronics Letters, 12(21), 567. doi: 10.1049/el:19760431
  • Garth, S. J. (1988). Birefringence in bent single-mode fibers. Journal of Lightwave Technology, 6(3), 445–449. doi: 10.1109/50.4022
  • Gauthier, R. C., & Ross, C. (1997). Theoretical and experimental considerations for a single-mode fiber-optic bend-type sensor. Applied Optics, 36(25), 6264. doi: 10.1364/ao.36.006264
  • Gong, H., Yang, X., Ni, K., Zhao, C.-L., & Dong, X. (2014). An Optical Fiber Curvature Sensor Based on Two Peanut-Shape Structures Modal Interferometer. IEEE Photonics Technology Letters, 26(1), 22–24. doi: 10.1109/lpt.2013.2288978
  • Gruner-Nielsen, L., Sun, Y., Jensen, R. V., Nicholson, J. W., & Lingle, R. (2014). Splicing of few mode fibers. 2014 The European Conference on Optical Communication (ECOC). doi: 10.1109/ecoc.2014.6964087
  • Hecht, J. (2015). Understanding fiber optics. Auburndale: LaserLight Press.
  • Hirose, K., Liang, Y., Kurosaka, Y., Watanabe, A., Sugiyama, T., & Noda, S. (2014). Watt-class high-power, high-beam-quality photonic-crystal lasers. Nature Photonics, 8(5), 406–411. doi: 10.1038/nphoton.2014.75
  • Hoque, M.-U., Hasan, M. N., & Lee, Y.-C. (2017). Design and fabrication of a biconvex aspherical microlens for maximizing fiber coupling efficiency with an ultraviolet laser diode. Sensors and Actuators A: Physical, 254, 36–42. doi: 10.1016/j.sna.2016.12.004
  • Jackson, K. P., Newton, S. A., Moslehi, B., Tur, M., Cutler, C. C., Goodman, J. W., & Shaw, H. J. (1985). Optical Fiber Delay-Line Signal Processing. IEEE Transactions on Microwave Theory and Techniques, 33(3), 193–210. doi: 10.1109/tmtt.1985.1132981
  • Karstensen, H., & Frankenberger, R. (1989). High-efficiency two lens laser diode to single-mode fiber coupler with a silicon plano convex lens. Journal of Lightwave Technology, 7(2), 244–249. doi: 10.1109/50.17762
  • Kasap, S. O. (2013). Optoelectronics & photonics: principles & practices: international edition. N. d: Pearson.
  • Kim, A., Roy, M., Dadani, F., & Wilson, B. C. (2010). A fiberoptic reflectance probe with multiple source-collector separations to increase the dynamic range of derived tissue optical absorption and scattering coefficients. Optics Express, 18(6), 5580. doi: 10.1364/oe.18.005580
  • Kubota, H. (2005). Tunable laser source. Retrieved from http://bit.ly/2Atm3q0
  • Lee, B. (2003). Review of the present status of optical fiber sensors. Optical Fiber Technology, 9(2), 57–79. doi: 10.1016/s1068-5200(02)00527-8
  • Li, Z., Zhou, J., Wang, W., He, B., Xue, Y., & Lou, Q. (2009). Limitations of coiling technique for mode controlling of multimode fiber lasers. 2009 Conference on Lasers & Electro Optics & The Pacific Rim Conference on Lasers and Electro-Optics. doi: 10.1109/cleopr.2009.5292572
  • Liu, Z., Tan, Z., Yin, B., Bai, Y., & Jian, S. (2014). Refractive index sensing characterization of a singlemode–claddingless–singlemode fiber structure based fiber ring cavity laser. Optics Express, 22(5), 5037. doi: 10.1364/oe.22.005037
  • Lu, Y.-K., Tsai, Y.-C., Liu, Y.-D., Yeh, S.-M., Lin, C.-C., & Cheng, W.-H. (2007). Asymmetric elliptic-cone-shaped microlens for efficient coupling to high-power laser diodes. Optics Express, 15(4), 1434. doi: 10.1364/oe.15.001434
  • Luo, Z., Wu, D., Xu, B., Xu, H., Cai, Z., Peng, J., … Zhang, H. (2016). Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers. Nanoscale, 8(2), 1066–1072. doi: 10.1039/c5nr06981e
  • Marcuse, D. (1976). Field deformation and loss caused by curvature of optical fibers. Journal of the Optical Society of America, 66(4), 311. doi: 10.1364/josa.66.000311
  • Modavis, R. A., & Webb, T. W. (1995). Anamorphic microlens for laser diode to single-mode fiber coupling. IEEE Photonics Technology Letters, 7(7), 798–800. doi: 10.1109/68.393210
  • Morales-Delgado, E. E., Farahi, S., Papadopoulos, I. N., Psaltis, D., & Moser, C. (2015). Delivery of focused short pulses through a multimode fiber. Optics Express, 23(7), 9109–9120. doi: 10.1364/oe.23.009109
  • Puttnam, B. J., Luis, R. S., Klaus, W., Sakaguchi, J., Delgado Mendinueta, J.-M., Awaji, Y., … Marciante, J. (2015). 2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb. 2015 European Conference on Optical Communication (ECOC). doi: 10.1109/ecoc.2015.7341685
  • Richardson, D. J., Nilsson, J., & Clarkson, W. A. (2010). High power fiber lasers: current status and future perspectives [Invited]. Journal of the Optical Society of America B, 27(11), B63–B92. doi: 10.1364/josab.27.000b63
  • Saitoh, K., & Koshiba, M. (2003). Leakage loss and group velocity dispersion in air-core photonic bandgap fibers. Optics Express, 11(23), 3100. doi: 10.1364/oe.11.003100
  • Sanghera, J. ., & Aggarwal, I. (1999). Active and passive chalcogenide glass optical fibers for IR applications: a review. Journal of Non-Crystalline Solids, 256-257, 6–16. doi: 10.1016/s0022-3093(99)00484-6
  • Savastru, D., Popescu, M., Miclos, S., Sava, F., Lorinczi, A., Rusu, M., & Savu, V. (2008). Single mode optical fiber coupling to a laser diode. Optical Memory and Neural Networks, 17(4), 254–257. doi: 10.3103/s1060992x08040024
  • Schermer, R. T. (2007). Mode scalability in bent optical fibers. Optics Express, 15(24), 15674. doi: 10.1364/oe.15.015674
  • Schermer, R. T., & Cole, J. H. (2007). Improved Bend Loss Formula Verified for Optical Fiber by Simulation and Experiment. IEEE Journal of Quantum Electronics, 43(10), 899–909. doi: 10.1109/jqe.2007.903364
  • Schwaerzle, M., Elmlinger, P., Paul, O., & Ruther, P. (2015). Miniaturized 3×3 optical fiber array for optogenetics with integrated 460 nm light sources and flexible electrical interconnection. 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS). doi: 10.1109/memsys.2015.7050911
  • Shah, V. S., Curtis, L., Vodhanel, R. S., Bour, D. P., & Young, W. C. (1990). Efficient power coupling from a 980-nm, broad-area laser to a single-mode fiber using a wedge-shaped fiber endface. Journal of Lightwave Technology, 8(9), 1313–1318. doi: 10.1109/50.59158
  • Sharma, A., & Kumar, M. (2015). Flat band slow light in silicon photonic crystal waveguide with large delay bandwidth product and low group velocity dispersion. IET Optoelectronics, 9(1), 24–28. doi: 10.1049/iet-opt.2014.0090
  • Shiraishi, K., Kagaya, M., Muro, K., Yoda, H., Kogami, Y., & Tsai, C. S. (2008). Single-mode fiber with a plano-convex silicon microlens for an integrated butt-coupling scheme. Applied Optics, 47(34), 6345. doi: 10.1364/ao.47.006345
  • Sokkar, T. Z. N., Ramadan, W. A., Shams El-Din, M. A., Wahba, H. H., & Aboleneen, S. S. (2014). Bent induced refractive index profile variation and mode field distribution of step-index multimode optical fiber. Optics and Lasers in Engineering, 53, 133–141. doi: 10.1016/j.optlaseng.2013.09.002
  • Sun, Y., Lingle, R., Shubochkin, R., McCurdy, A. H., Balemarthy, K., Braganza, D., … Bhoja, S. (2017). SWDM PAM4 Transmission Over Next Generation Wide-Band Multimode Optical Fiber. Journal of Lightwave Technology, 35(4), 690–697. doi: 10.1109/jlt.2016.2618723
  • Tong, X. C. (2014). Advanced materials for integrated optical waveguides. N. d.: Springer.
  • Wang, J., Ashrafi, R., Adams, R., Glesk, I., Gasulla, I., Capmany, J., & Chen, L. R. (2016). Subwavelength grating enabled on-chip ultra-compact optical true time delay line. Scientific Reports, 6(1). doi: 10.1038/srep30235
  • Wilner, K., & van den Heuvel, A. P. (1976). Fiber-optic delay lines for microwave signal processing. Proceedings of the IEEE, 64(5), 805–807. doi: 10.1109/proc.1976.10216
  • Xu, P., Dong, Y., Zhang, J., Zhou, D., Jiang, T., Xu, J., … Bao, X. (2015). Bend-insensitive distributed sensing in singlemode-multimode-singlemode optical fiber structure by using Brillouin optical time-domain analysis. Optics Express, 23(17), 22714. doi: 10.1364/oe.23.022714
  • Zadok, A., Zilka, E., Eyal, A., Thévenaz, L., & Tur, M. (2008). Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers. Optics Express, 16(26), 21692–21707. doi: 10.1364/oe.16.021692
  • Zavalin, A., Yang, J., Haase, A., Holle, A., & Caprioli, R. (2014). Implementation of a Gaussian Beam Laser and Aspheric Optics for High Spatial Resolution MALDI Imaging MS. Journal of The American Society for Mass Spectrometry, 25(6), 1079–1082. doi: 10.1007/s13361-014-0872-5
  • Zervas, M. N., & Codemard, C. A. (2014). High Power Fiber Lasers: A Review. IEEE Journal of Selected Topics in Quantum Electronics, 20(5), 219–241. doi: 10.1109/jstqe.2014.2321279
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.desklight-2e2a5694-b602-4820-ba6e-c4910d3fd45c
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.