PL EN


2014 | 191 | 37-44
Article title

Zastosowanie funkcji Höldera do modelowania danych przestrzennych

Content
Title variants
EN
Application of Hölder Function to Description Spatial Data
Languages of publication
PL
Abstracts
EN
The aim of his article is to use the Hölder function to analysis spatial data. We show the method of generate spatial data with Hölder exponents. The article consists of two parts: the first one presents elements of analysis the Hölder function, and the second consist results of analysis in spatial dimension.
Year
Volume
191
Pages
37-44
Physical description
Contributors
References
  • Ayache A., Lévy Véhel J., Generalized Multifractional Brownian Motion: Definition and Preliminary Results, [w:] Fractals: Theory and Applications in Engineering, eds. M. Dekking, J. Lévy Véhel, E. Lutton, C. Tricot, Springer Verlag, New York 1999.
  • Ayache A., Taqqu M.S., Multifractional Processes with Random Exponent, "Stochastic Processes and their Applications" 2004, 111(1), s. 119-156.
  • Barrière O., Synthèse et estimation de mouvements browniens multifractionnaires et autres processus à régularité prescrite. Définition du processus autorégulé multifractionnaire et applications, PhD thesis, IRCCyN, Nantes 2007.
  • Daoudi K., Lévy Véhel J., Meyer Y., Construction of Continuous Functions with Prescribed Local Regularity, "Journal of Constructive Approximations" 1998, Vol. 014(03), s. 349-385.
  • Echelard A., Barrière O., Lévy-Véhel J., Terrain Modelling with Multifractional Brownian Motion and Self-Regulating Processe, Computer Vision and Graphics: Proceedings, ICCVG 2010, Vol. 6374, eds. L. Bok, R. Tadusiewicz, L.J. Chmielewski, Warsaw 2010, s. 342-351.
  • Falconer K.J., Lévy-Véhel J., Multifractional, Multistable and Other Processes with Prescribed Local Form, "Journal of Theoretical Probabilisty" 2008, Vol. 21.
  • Kopczewska K., Ekonometria i statystyka przestrzenna, Wydawnictwo CeDeWu, Warszawa 2007.
  • Lévy-Véhel J., Mendivil F., Multifractal and Higher Dimensional Zeta Functions, "Nonlinearity" 2011, Vol. 24(1), s. 259-276.
  • Lévy-Véhel J., Seuret S., The 2-Microlocal Formalism, Fractal Geometry and Applications: A Jubilee of Benoit Mandelbrot, "Proceeding of Symposia in Pure Mathemathics" 2004, Vol. 72 (2), s. 153-215.
  • Mastalerz-Kodzis A., Modelowanie procesów na rynku kapitałowym za pomocą multifraktali, Wydawnictwo Akademii Ekonomicznej, Katowice 2003.
  • Peltier R.F., Lévy Véhel J., Multifractional Brownian Motion: Definition and Preliminary Results, INRIA Recquencourt, Rapport de recherche No. 2645, 1995.
  • Perfect E., Tarquis A.M., Bird N.R.A., Accuracy of Generalized Dimensions Estimated from Grayscale Images Using the Method of Moments, "Fractals" 2009, Vol. 17, No. 3, s. 351-363.
  • Suchecki B., Ekonometria przestrzenna, Wydawnictwo C.H. Beck, Warszawa 2010.
Document Type
Publication order reference
Identifiers
ISSN
2083-8611
YADDA identifier
bwmeta1.element.desklight-2f42678f-07ab-4f61-8685-6218d64926f0
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.