Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2015 | 12 | 255-285

Article title

Biologia systemowa jako paradygmat badawczy teorii inteligentnego projektu

Authors

Content

Title variants

EN
Systems Biology as a Research Program for Intelligent Design

Languages of publication

PL EN

Abstracts

PL
Przeciwnicy teorii inteligentnego projektu argumentowali czasem, że jej podejście do biologii zniechęca do prowadzenia badań naukowych. Można jednak pokazać, że najpłodniejszy nowy paradygmat biologii systemowej jest w istocie znacznie spójniejszy z przekonaniem o inteligentnym zaprojektowaniu życia niż przekonanie o neodarwinowskiej ewolucji. W ramach tego nowego paradygmatu biologii systemowej, który powstał i rozwijał się przez mniej więcej ostatnie dziesięć lat, układy ożywione analizowane są przy wykorzystaniu pojęć zaczerpniętych z inżynierii systemów, takich jak projekt, przetwarzanie informacji, optymalizacja oraz inne jawnie teleologiczne pojęcia. Paradygmat ten oferuje odnoszącą sukcesy, umożliwiającą formułowanie ilościowych przewidywań teorię biologiczną. Mimo że główni przedstawiciele tej dyscypliny uznają układy biologiczne za wytwór doboru naturalnego, to nie potrafią uniknąć używania języka projektu i koncepcji projektowych w swoich badaniach, a już nawet pobieżne spojrzenie na biologię systemową skłania do wniosku, że naprawdę przyjmuje ona całkowicie projektowe podejście.
EN
Opponents of the intelligent design (ID) approach to biology have sometimes argued that the ID perspective discourages scientific investigation. To the contrary, it can be argued that the most productive new paradigm in systems biology is actually much more compatible with a belief in the intelligent design of life than with a belief in neo-Darwinian evolution. This new paradigm in system biology, which has arisen in the past ten years or so, analyzes living systems in terms of systems engineering concepts such as design, information processing, optimization, and other explicitly teleological concepts. This new paradigm offers a successful, quantitative, predictive theory for biology. Although the main practitioners of the field attribute the presence of such things to the outworking of natural selection, they cannot avoid using design language and design concepts in their research, and a straightforward look at the field indicates it is really a design approach altogether.

Year

Volume

12

Pages

255-285

Physical description

Contributors

  • University of Pittsburgh

References

  • B. FORREST and P.R. GROSS, Creationism’s Trojan Horse, Oxford University Press, Oxford 2004.
  • D. SNOKE, In Favor of God-of-the-Gaps Reasoning, Perspectives on Science and Christian Faith 2001, vol. 53, s. 152-158.
  • S. MEYER, Darwin’s Doubt: The Explosive Origin of Animal Life and the Case for Intelligent Design, HarperCollins, New York 2013.
  • M. BEHE, The Edge of Evolution: The Search for the Limits of Evolution, Free Press, New York 2007.
  • M.W. KIRSCHNER and J.C. GERHART, The Plausibility of Life: Resolving Darwin’s Dilemma, Yale University Press, New Haven 2005.
  • J. BERGMAN, The Functions of Introns: From Junk DNA to Designed DNA, Perspectives on Science and Christian Faith 2001, vol. 53, s. 170-178.
  • J. WELLS, The Myth of Junk DNA, Discovery Institute, Seattle 2011.
  • T. GHOSE, «Junk» DNA Mystery Solved: It’s Not Needed, LiveScience 12 May 2013, http://www.livescience.com/31939-junk-dna-mystery-solved.html (25.09.2015).
  • S.J. GOULD, The Panda’s Thumb: More Reflections in Natural History, W.W. Norton, New York 1980.
  • J.D. BARROW and F.J. TIPLER, The Anthropic Cosmological Principle, Oxford University Press, Oxford 1988.
  • B. MISHRA, Intelligently Deciphering Unintelligible Designs: Algorithmic Algebraic Model Checking in Systems Biology, Journal of The Royal Society Interface 2009, vol. 6, s. 575- 597, doi: 10.1098/rsif.2008.0546.
  • K. KOEPPL and G. SETTI, Analysis and Design of Biological Circuits and Systems, IEEE International Symposium on Circuits and Systems 2009, s. 297-300, doi: 10.1109/ISCAS.2009.5117744.
  • M. ALLARAKHIA and A. WENSLEY, Systems Biology: A Disruptive Biopharmaceutical Research Paradigm, Technological Forecasting and Social Change 2007, vol. 74, s. 1643-1660, doi: 10.1016/j.techfore.2006.07.012.
  • H. KITANO, Computational Systems Biology, Nature 2002, vol. 420, s. 206-210, doi: 10.1038/nature01254.
  • F. CONTI, M.C. VALERIO, J.P. ZBILUT, and A. GIULIANI, Will Systems Biology Offer New Holistic Paradigms to Life Sciences?, Systems and Synthetic Biology 2007, vol. 1, s. 161-165, doi: 10.1007/s11693-008-9016-1.
  • H.W. ENGL, C. FLAMM, P. KUGLER , J. LU, S. MULLER, and P. SCHUSTER, Inverse Problems in Systems Biology, Inverse Problems 2009, vol. 25, s. 123014, doi: 10.1088/0266-5611/25/12/123014.
  • D. GATHERER, So What Do We Really Mean When We Say That Systems Biology Is Holistic?, BMC Systems Biology 2010, vol. 4, s. 22, doi: 10.1186/1752-0509-4-22.
  • R. RUSHMER, All Systems Go [System Biology], Professional Engineering 2007, vol. 20, s. 37-38.
  • G. NICOLIS and I. PRIGOGINE, Self-Organization in Non-Equilibrium Systems. Dissipative Structures to Order through Fluctuations, John Wiley and Sons, New York 1977.
  • I. PRIGOGINE i I. STENGERS, Z chaosu ku porządkowi. Nowy dialog człowieka z przyrodą, przeł. Katarzyna Lipszyc, Biblioteka Myśli Współczesnej, Państwowy Instytut Wydawniczy, Warszawa 1990.
  • M. MORANGE, The Death of Molecular Biology?, History and Philosophy of the Life Sciences 2008, vol. 30, s. 31-42.
  • H.-J. RHEINBERGER, What Happened to Molecular Biology?, BioSocieties 2008, vol. 3, s. 303-310, doi: 10.1017/S1745855208006212.
  • E.F. KELLER, A Clash of Two Cultures, Nature 2007, vol. 445, s. 603, doi: 10.1038/445603a.
  • O. WOLKENHAUER and M. MESAROVIC, Feedback Dynamics and Cell Function: Why Systems Biology Is Called Systems Biology, Molecular BioSystems 2005, vol. 1, s. 14-16, doi: 10.1039/B502088N.
  • L.P. KADANOFF, Hip Bone Is Connected to... II, Physics Today 2009, vol. 62, s. 8-9, doi: 10.1063/1.3099588.
  • K.C. TU, T. LONG, S.L. SVENNINGSEN, N.S. WINGREEN, and B.L. BASSIER, Negative Feedback Loops Involving Small Regulatory RNAs Precisely Control the Vibrio harveyi Quorum-Sensing Response, Molecular Cell 2010, vol. 37, s. 567-579, doi: 10.1016/j.molcel.2010.01.022.
  • Y.B. ZHANG, K. CHEN, J. WANG, A. CHEN, and T. ZHOU, Positive Feedback-Assisted Short/Long-Range Cell Signalings in MAPK Cascades, International Journal of Modern Physics C 2009, vol. 20, s. 1769-1787, doi: 10.1142/S0129183109014722.
  • C.H. HANSEN, R.G. ENDRES, and N.S. WINGREEN, Chemotaxis in Escherichia coli: A Molecular Model for Robust Precise Adaptation, PLoS Computational Biology 2008, vol. 4, s. e1, doi: 10.1371/journal.pcbi.0040001.
  • R.G. ENDRES and N.S. WINGREEN, Precise Adaptation in Bacterial Chemotaxis Through «Assistance Neighborhoods», Proceedings of the National Academy of Sciences USA 2006, vol. 103, s. 13040-13044, doi: 10.1073/pnas.0603101103.
  • Y.X. LI and A. GOLDBETER, Pulsatile Signaling in Intercellular Communication — Periodic Stimuli Are More Efficient than Random or Chaotic Signals in a Model Based on Receptor Desensitization, Biophysical Journal 1992, vol. 61, s. 161-171, doi: 10.1016/S0006-3495(92)81824-6.
  • M. MARHL and V. GRUBELNIK, Role of Cascades in Converting Oscillatory Signals into Stationary Step-Like Responses, Biosystems 2007, vol. 87, s. 58-67, doi: 10.1016/j.biosystems.2006.03.004.
  • A. GOLDBETER, Oscillations and Waves of Cyclic AMP in Dicyostelium: A Prototype for Spatio-Temporal Organization and Pulsatile Intercellular Communication, Bulletin of Mathematical Biology 2006, vol. 68, s. 1095-1109, doi: 10.1007/s11538-006-9090-z.
  • C.L. WEI, X.H. WANG, M. CHEN, K.F. OUYANG, M. ZHENG, and H.P. CHENG, Flickering Calcium Microdomains Signal Turning of Migrating Cells, Canadian Journal of Physiology and Pharmacology 2010, vol. 88, s. 105-110, doi: 10.1139/Y09-118.
  • M. STEVENSE, T. MURAMOTO, I. MULLER, and J.R. CHUBB, Digital Nature of the Immediate-Early Transcriptional Response, Development 2010, vol. 137, s. 579-584, doi: 10.1242/dev.043836.
  • T.C. NI and M.A. SAVAGEAU, Application of Biochemical Systems Theory to Metabolism in Human Red Blood Cells — Signal Propagation and Accuracy of Representation, The Journal of Biological Chemistry 1996, vol. 271, s. 7927-7941, doi: 10.1074/jbc.271.14.7927.
  • H.H. PATTEE, Epistemic, Evolutionary, and Physical Conditions for Biological Information, Biosemiotics 2013, vol. 6, s. 9-31, doi: 10.1007/s12304-012-9150-8.
  • S. MEYER, Signature in the Cell, HarperCollins, New York 2009.
  • J.F.V. VINCENT, O. BOGATYREVA, and N. BOGATYREV, Biology Doesn’t Waste Energy: That’s Really Smart, Proceedings of SPIE 2006, vol. 6168, s. 616801, doi: 10.1117/12.682174.
  • W. BIALEK, Optimizing Information Flow in Biological Networks, Bulletin of the American Physical Society 2009, vol. 54, s. W7/1.
  • M. ALLARAKHIA and A. WENSLEY, Systems Biology: Melting the Boundaries in Drug Discovery Research. Technology Management: A Unifying Discipline for Melting the Boundaries, IEEE 2005, Cat. No. 05CH37666, s. 262-274, doi: 10.1109/PICMET.2005.1509700.
  • W. KOLCH, Defining Systems Biology: Through the Eyes of a Biochemist, IET Systems Biology 2008, vol. 2, s. 5-7, doi: 10.1049/iet-syb:20070060.
  • D. AUBELand M. FUSSENEGGER, Watch the Clock — Engineering Biological Systems to Be on Time, Current Opinion in Genetics & Development 2010, vol. 20, s. 634-643, doi: 10.1016/j.gde.2010.09.003.
  • F. DI CARA and K. KING -JONES, How Clocks and Hormones Act in Concert to Control the Timing of Insect Development, w: A.E. ROUGVIE and M.B. O’CONNOR (eds.), Current Topics in Developmental Biology ,vol. 105, Academic Press, New York 2013, s. 1-36, doi: 10.1016/B978-0-12-396968-2.00001-4.
  • P. ROBINET, L. MOLLET, P. GONZALEZ, T. NORMAND, S. CHARPENTIER et al., The Mitogaligin Protein Is Addressed to the Nucleus via a Non-Classical Localization Signal, Biochemical and Biophysical Research Communications 2010, vol. 392, s. 53-57, doi: 10.1016/j.bbrc.2009.12.162.
  • M. KERSZBERG, Genes, Neurons and Codes: Remarks on Biological Communication, Bioessays 2003, vol. 25, s. 699-708, doi: 10.1002/bies.10304.
  • A. SOZA, A. NORAMBUENA, J. CANCINO, E. DE LA FUENTE, P. HENKLEIN, and A. GONZALEZ, Sorting Competition with Membrane-Permeable Peptides in Intact Epithelial Cells Revealed Discrimination of Transmembrane Proteins Not Only at the Trans-Golgi Network But Also at Pre-Golgi Stages, The Journal of Biological Chemistry 2004, vol. 279, s. 17376-17383, doi: 10.1074/jbc.M313197200.
  • Y. MILEYKO, H. EDELSBRUNNER, C.A. PRICE, and J.S. WEITZ, Hierarchical Ordering of Reticular Networks, PLoS One 2012, vol. 7, s. e36715, doi: 10.1371/journal.pone.0036715.
  • R. SUBRAMANIAM and C. RAMPITSCH, Towards Systems Biology of Mycotoxin Regulation, Toxins 2013, vol. 5, s. 675-682, doi: 10.3390/toxins5040675.
  • M. BERTOLASO, Breaking Down Levels of Biological Organization, Theoretical Biology Forum 2013, vol. 106, s. 49-71.
  • G.M. EDELMAN and J.A. GALY, Degeneracy and Complexity in Biological Systems, Proceedings of the National Academy of Sciences USA 2001, vol. 98, s. 13763-13768, doi: 10.10 73/pnas.231499798.
  • J. WHITACRE and A. BENDER, Degeneracy: A Design Principle for Achieving Robustness and Evolvability, Journal of Theoretical Biology 2010, vol. 263, s. 143-153, doi: 10.1016/j.jtbi.2009.11.008.
  • J. SHAPIRO, Evolution: A View From the 21st Century, FT Press/Pearson, Upper Saddle River, New Jersey 2011.
  • M. DEEM, Life Has Evolved to Evolve, Bulletin of the American Physical Society 2006, vol. 51, s. R7/2.
  • A.D. LANDER, A Calculus of Purpose, PLoS Biology 2004, vol. 2, s. e164, doi: 10.1371/journal.pbio.0020164.
  • G. TKACIK, G.G. CALLAN, and W. BIALEK, Information Flow and Optimization in Transcriptional Regulation, Proceedings of the National Academy of Sciences USA 2008, vol. 105, s. 12265-12270, doi: 10.1073/pnas.0806077105.
  • E. BALSA-CANTO and J.R. BANGA, AMIGO, a Toolbox for Advanced Model Identification in Systems Biology Using Global Optimization, Bioinformatics 2011, vol. 27, s. 2311-2313, doi: 10.1093/bioinformatics/btr370.
  • E. BALSA-CANTO, J.R. BANGA, J.A. EGEA, A. FERNANDEZ-VILLA-VERDE, and G.M. DE HIJAS-LISTE, Global Optimization in Systems Biology: Stochastic Methods and Their Applications, w: I.I. GORYANIN and A.B. GORYACHEV (eds.), Advances in Systems Biology, Advances in Experimental Medicine and Biology, vol. 736, Springer, Berlin 2012, s. 409- 424, doi: 10.1007/978-1-4419-7210-1_24.
  • J.R. BANGA, Optimization in Computational Systems Biology, BMC Systems Biology 2008, vol. 2, s. 47, doi: 10.1186/1752-0509-2-47.
  • J.C. AVISE, Inside the Human Genome: A Case for Non-Intelligent Design, Oxford University Press, Oxford 2010.
  • D.W. SNOKE, Jak w zaprojektowanym Wszechświecie zdefiniować to, co niezaprojektowane”, przeł. Dariusz Sagan, Filozoficzne Aspekty Genezy 2009/2010, t. 6/7, s. 117-137, http://www.nauka-a-religia.uz.zgora.pl/images/FAG/2009-2010.t.6-7/art.09.pdf (29.09.2015).
  • M.E. CSETE and J.C. DOYLE, Reverse Engineering of Biological Complexity, Science 2002, vol. 295, s. 1664-1669, doi: 10.1126/science.1069981.
  • P. ZOPPOLI, S. MORGANELLA, and M. CECCARELLI, TimeDelay-ARACNE: Reverse Engineering of Gene Networks from Time-Course Data by an Information Theoretic Approach, BMC Bioinformatics 2010, vol. 11, s. 154, doi: 10.1186/1471-2105-11-154.
  • S. POLSTRA, T.E. PRONK, A.D. PIMENTEL, and T.M. BREIT, Towards Design Space Exploration for Biological Systems, Journal of Computers 2008, vol. 3, s. 1-9, doi: 10.4304/jcp.3.2.1-9.
  • J. BRANDER, Bio-Inspiration Not Bio-Imitation, Proceedings of SPIE 2008, vol. 6964, s. 696403, doi: 10.1117/12.771762.
  • P.-A. BRAILLARD, Systems Biology and the Mechanistic Framework, History and Philosophy of the Life Sciences 2010, vol. 32, s. 43-62.
  • O.S. SOYER, The Promise of Evolutionary Systems Biology: Lessons from Bacterial Chemotaxis, Science Signaling 2010, vol. 39, s. pe23, doi: 10.1126/scisignal/3128pe23.
  • F. CRICK, What Mad Pursuit, Basic Books, New York 1990.
  • R. DAWKINS, Ślepy zegarmistrz, czyli jak ewolucja dowodzi, że świat nie został zaplanowany, przeł. Antoni Hoffman, Biblioteka Myśli Współczesnej, Państwowy Instytut Wydawniczy, Warszawa 1994.
  • R. TANAKA, M. CSETE, and J. DOYLE, Highly Optimised Global Organisation of Metabolic Networks, IEEE Proceedings in Systems Biology 2005, vol. 152, s. 179-184, doi: 10.1049/ip-syb:20050042.
  • R. NUSSINOV and C. ALEMAN, Nanobiology: From Physics and Engineering to Biology, Physical Biology 2006, vol. 3, s. 2, doi: 10.1088/1478-3967/3/1/E01.
  • A. ARKIN, Playing Practical Games with Bacteria and Viruses: Exploring the Molecular Mechanisms Behind Clever Cellular Stratagems, w: Bio-, Micro-, and Nanosystems 2003: ASM Conferences (IEEE), s. 12, doi: 10.1109/BMN.2003.1220594.
  • R. BOYLE, Disquisition about the Final Causes of Natural Things, w: Works of Robert Boyle, vol. 5, Pickering and Chatto, London 1999.
  • W. HARVEY, Dr. Ent’s Epistle Dedicatory to the Exertationes de Generatione Animalium, w: Works of William Harvey, Syndenham Society, London 1847.
  • K. MILLER, Only a Theory: Evolution and the Battle for America’s Soul, Viking, New York 2008, s. 37, 96-97.
  • P. KITCHER, Living with Darwin, Oxford University Press, Oxford 2007.
  • J.R. ECKER, Serving Up a Genome Feast, Nature 2012, vol. 489, s. 52-55, doi: 10.1038/489052a.
  • I. BARROSO, Non-Coding But Functional, Nature 2012, vol. 489, s. 52-55, doi: 10.1038/489052a.
  • J.A. SHAPIRO, Bob Dylan, ENCODE, and Evolutionary Theory: The Times They Are A-Changin’, Huffington Post 9 December 2012, http://www.huffingtonpost.com/james-a-shapiro/bob-dylan-encode-and-evol_b_1873935.html (30.09.2015).
  • E. IBARRA-LACLETTE, E. LYONS, G. HERNAN- DEZ-GUZMAN, C. ANAHI PEREZ-TORRES, L. CARRETERO-PAULET et al., Architecture and Evolution of a Minute Plant Genome, Nature 2013, vol. 498, s. 94-98, doi: 10.1038/nature12132.
  • C.G. HUNTER, Darwin’s God: Evolution and the Problem of Evil, Brazos Press, Ada, Michigan 2001.
  • R. STAFFORD, Crossing Fitness Valleys During the Evolution of Limpet Homing Behaviour, Central European Journal of Biology 2009, vol. 5, s. 274-282, doi: 10.2478/s11535-010-0001-9.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.desklight-35f9b726-f01e-424d-8d5b-88d5da29c4cb
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.