PL EN


2013 | 1 | 2(251) |
Article title

Ujednoznacznienie pojęć dla języka polskiego dla potrzeb budowania tożsamości użytkowników Internetu

Authors
Content
Title variants
EN
Word srnse disambiguation of the Polish language for the needs of generating digital identities
Languages of publication
Abstracts
PL
Wraz z przenoszeniem się aktywności ludzi do Internetu, coraz istotniejsze staje się zagadnienie wirtualnych tożsamości użytkownika, rozumianych jako przetwarzalne reprezentacje cech danego użytkownika sieci. Tożsamości takie mają umożliwić powiadamianie systemów, z którymi użytkownik wchodzi w interakcje, o istotnych jego cechach, na przykład dla potrzeb personalizacji treści dostarczanej przez system. Opracowanie reprezentacji różnych cech, która miałaby być zrozumiała dla wielu niepowiązanych ze sobą systemów, jest trudne. Dodatkowym wyzwaniem jest opracowanie sposobów pozyskiwania informacji o charakterystykach użytkownika służących do utworzenia jego tożsamości. Artykuł ma na celu przeanalizowanie dwóch zagadnień, które mogą znaleźć zastosowanie w rozwiązaniu omawianych problemów. Są nimi: semantyczne modelowanie użytkowników, które może pozwolić na konstruowanie modeli możliwych do wykorzystania w wielu różnych systemach, oraz ujednoznacznianie pojęć wyekstrahowanych z czytanych przez użytkownika artykułów, będące jednym ze sposobów pozyskiwania informacji o jego potrzebach. Na podstawie przeprowadzonej analizy podjęta została próba określenia kierunków badań w omawianych zakresach.
EN
Nowadays, as more and more real world activities are transferred to the Web, the topic of digital identities, understood as representations of users’ characteristics, become increasingly important. One of the purposes of research into digital identities is to use them as a means of informing the systems the user interacts with about his/her characteristics, needs and expectations, in order to, for example, enable a constant personalization process. However, a requirement that such identities are to represent a wide range of the user’s characteristics in the form understandable to many different systems, raises many difficulties. An issue of how to collect such a broad set of information about users is also of particular significance. The aim of the article is to analyze two topics that can potentially be used while solving the above mentioned problems. These are ontology-based user modeling, which can be used for building reusable user models, and word sense disambiguation for words extracted from articles read by the users on different sites they visit. Based on the analysis of these topics, a proposal of further research directions is presented.
Year
Volume
1
Issue
Physical description
Contributors
  • Uniwersytet Ekonomiczny w Poznaniu
References
  • Adomavicius, G., Tuzhilin, A., 2005, Personalization Technologies: A Process-oriented Perspective, Commun. ACM, vol. 48, s. 83–90, http://doi.acm.org/10.1145/1089107.1089109 [dostęp: 30.11.2012]
  • Agirre, E., Edmonds, P., 2006, Word Sense Disambiguation: Algorithms and Applications, Springer.
  • Agirre, E., Soroa, A., 2009, Personalizing PageRank for Word Sense Disambiguation, w: Proceedings of the 12th Conference of the European Chapter of the Association for Computational Linguistics, EACL ’09, Association for Computational Linguistics, Stroudsburg, PA, USA, s. 33–41, http://portal.acm.org/citation.cfm?id=1609067.1609070 [dostęp: 30.11.2012].
  • Anand, S.S., Kearney, P., Shapcott, M., 2007, Generating Semantically Enriched User Profiles for Web Personalization, ACM Trans. Internet Technol., vol. 7, http://doi.acm.org/10.1145/1278366.1278371 [dostęp: 30.11.2012].
  • Banerjee, S., Pedersen, T., 2010, An Adapted Lesk Algorithm for Word Sense Disambiguation Using WordNet, Computational Linguistics and Intelligent Text Processing, s. 117–171.
  • Bas, D., Broda, B., Piasecki, M., 2008, Towards Word Sense Disambiguation of Polish ,w: International Multiconference on Computer Science and Information Technology, 2008. IMCSIT 2008, IEEE, s. 73–78.
  • Bourdeau, J., Mizoguchi, R., 2000, Using Ontological Engineering to Overcome Common AI-ED Problems, International Journal of Artificial Intelligence in Education, vol. 11, s. 107–121.
  • Broda, B., Mazur, W., 2010, Evaluation of Clustering Algorithms for Polish Word Sense Disambiguation, w: Proceedings of the International Multiconference on Computer Science and Information Technology, IEEE, s. 25–32.
  • Brusilovsky, P., Millán, E., 2007, User Models for Adaptive Hypermedia and Adaptive Educational Systems, w: Brusilovsky P., Kobsa A., Nejdl W. (eds.), The Adaptive Web, vol. 4321, serie Lecture Notes in Computer Science, Springer Berlin/Heidelberg, s. 3–53.
  • Cretton, F., La Calvé, A., 2008, Generic Ontology Based User Model: GenOUM, SMV technical report series, vol. 203.
  • Derwojedowa, M., Piasecki, M., Szpakowicz, S., Zawisławska, M., Broda, B., 2008, Words, Concepts and Relations in the Construction of Polish WordNet, w: Proceedings of the Global WordNet Conference, Seged, Hungary, Citeseer, s. 162–177.
  • Gruber, T., 1993, A Translation Approach to Portable Ontology Specifications, Knowledge Acquisition, vol. 5, no. 2, s. 199–220.
  • Heckmann, D., 2005, Ubiquitous User Modeling, vol. 297, IOS Press.
  • Kay, J., 1999, Ontologies for Reusable and Scrutable Student Models , AIED Workshop W2: Workshop on Ontologies for Intelligent Educational Systems, s. 72–77.
  • Lenat, D.B., Guha, R.V., 1991, Ideas for Applying CYC, MCC Technical Report ACT-CYC-407-91, December.
  • Magnini, B., Strapparava, C., 2001, Using WordNet to Improve User Modelling in a Web Document Recommender System, w: Proceedings of the NAACL 2001 Workshop on WordNet and Other Lexical Resources, vol. 31.
  • Miller, G.A., 1995, WordNet: A Lexical Database for English, Commun. ACM, vol. 38, s. 39–41, http://doi.acm.org/10.1145/219717.219748 [dostęp: 30.11.2012].
  • Młodzki, R., Przepiórkowski, A., 2011, The WSD Development Environment, Human Language Technology. Challenges for Computer Science and Linguistics, s. 224–233.
  • Nabeth, T., Gasson, M., 2005, D2.3: Models, FIDIS (Future of Identity in Information Society) Deliverable.
  • Nabeth, T., Hildebrandt, M., 2005, D2.1: Inventory of Topics and Clusters, FIDIS (Future of Identity in Information Society) Deliverable.
  • Navigli, R., 2009, Word Sense Disambiguation: A Survey, ACM Comput. Surv., vol. 41, s. 10:1–10:69, http://doi.acm.org/10.1145/1459352.1459355 [dostęp: 30.11.2012].
  • Niederée, C., Stewart, A., Mehta, B., Hemmje, M., 2004, A Multi-dimensional, Unified User Model for Cross-system Personalization, w: AVI 2004, Citeseer, s. 34.
  • Piasecki, M., 2007, Polish Tagger TaKIPI: Rule Based Construction and Optimisation, Task Quarterly, vol. 11, no. 1–2, s. 151–167.
  • Ponzetto, S.P., Navigli, R., 2010, Knowledge-rich Word Sense Disambiguation Rivaling Supervised Systems, w: Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, ACL ’10, Association for Computational Linguistics,Stroudsburg, PA, s. 1522–1531, http://portal.acm.org/citation.cfm?id=1858681.1858835 [dostęp: 30.11.2012].
  • Przepiórkowski, A., Murzynowski, G., 2009, Manual Annotation of the National Corpus of Polish with Anotatornia, The proceedings of Practical Applications in Language and Computers (PALC-2009), Peter Lang, Frankfurt.
  • Przepiórkowski, A., 2007, Slavonic Information Extraction and Partial Parsing , w: Proceedings of the Workshop on Balto-Slavonic Natural Language Processing: Information Extraction and Enabling Technologies, ACL ’07, Association for Computational Linguistics, Stroudsburg, PA, s. 1–10, http://portal.acm.org/citation.cfm?id=1567545.1567547 [dostęp: 30.11.2012].
  • Razmerita, L., Angehrn, A., Maedche, A., 2003, Ontology-based User Modeling for Knowledge Management Systems, User Modeling 2003, s. 148–148.
  • Salton, G., Wong, A. i Yang, C.S., 1975, A Vector Space Model for Automatic Indexing , Commun. ACM, vol. 18, s. 613–620, http://doi.acm.org/10.1145/361219.361220 [dostęp: 30.11.2012].
  • Sieg, A., Mobasher, B., Burke, R., 2010, Improving the Effectiveness of Collaborative Recommendation with Ontology-based User Profiles, w: Proceedings of the 1st International Workshop on Information Heterogeneity and Fusion in Recommender Systems, HetRec’10, ACM, New York, s. 39–46, http://doi.acm.org/10.1145/1869446.1869452 [dostęp: 30.11.2012].
  • Sosnovsky, S., Dicheva, D., 2010, Ontological Technologies for User Modelling , Int. J. Metadata Semant. Ontologies, vol. 5, s. 32–71, http://dx.doi.org/10.1504/IJMSO.2010. 032649 [dostęp: 30.11.2012].
  • Stefani, A., Strappavara, C., 1998, Personalizing Access to Web Sites: The SiteIF Project ,w: Proceedings of the 2nd Workshop on Adaptive Hypertext and Hypermedia HYPER- TEXT, vol. 98, s. 20–24.
  • Tsatsaronis, G., Varlamis, I., Nørvåg, K., 2010, An Experimental Study on Unsupervised Graph-based Word Sense Disambiguation , w: Gelbukh, A. (ed.), Computational Linguistics and Intelligent Text Processing, vol. 6008, serie Lecture Notes in Computer Science, Springer Berlin/Heidelberg, s. 184–198.
  • Zhang, H., Song, Y., Song, H., 2007, Construction of Ontology-based User Model for Web Personalization, User Modeling 2007, s. 67–76.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.desklight-36db146e-c864-40a3-b8bf-450c9dc96c3b
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.