PL EN


2013 | 8 | 5-17
Article title

Algorithm for Bi-Criteria Stochastic Generalized Transportation Problem

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
The Generalized Transportation Problem is a variant of the classical Transpor-tation Problem, where the sum of the amounts of goods delivered to the destina-tion points is different from (usually lower than) the total amount sent from the sources. The Stochastic Generalized Transportation Problem (SGTP) is a version with random demand. We present the Bi-Criteria SGTP and propose an algorithm for determining the set of effective solutions.
Year
Volume
8
Pages
5-17
Physical description
Contributors
References
  • Ahuja R.K., Magnanti T.L., Orlin J.B. (1993), Network Flows. Theory, Algorithms and Applications, Prentice Hall.
  • Aneja Y.P., Nair K.P.K. (1979), Bicriteria Transportation Problem, Management Science 25, p. 73-78.
  • Anholcer M. (2005), Zbieżność metody wyrównań dla nieliniowych zadań alokacji, in: Z prac Katedry Badań Operacyjnych, eds. K. Piasecki, W. Sikora, Zeszyty Naukowe Akademii Ekonomicznej w Poznaniu 64, p. 183-198.
  • Anholcer M. (2008a), Analiza porównawcza wybranych algorytmów rozwiązywania nieliniowych zadań alokacji dóbr jednorodnych, Wydawnictwo Akademii Ekonomicznej, Poznań.
  • Anholcer M. (2008b), Porównanie działania wybranych algorytmów rozwiązywania nieliniowych zadań alokacji, in: Metody i zastosowania badań operacyjnych '2007, ed. D. Kopańska-Bródka , Prace Naukowe Akademii Ekonomicznej w Katowicach, Katowice, p. 9-25.
  • Anholcer M. (2013a), On the Nonlinear Generalized Transportation Problem, preprint.
  • Anholcer M. (2013b), Algorithm for Stochastic Generalized Transportation Problem, submitted.
  • Anholcer M., Kawa A. (2012), Optimization of Supply Chain via Reduction of Complaints Ratio, Lecture Notes in Computer Science, Vol 7327/2012 p. 622-628.
  • Balas E. (1966), The Dual Method for the Generalized Transportation Problem, Management Science, Vol. 12, No. 7, Series A, Sciences, p. 555-568.
  • Balas E., Ivanescu P.L. (1964), On the Generalized Transportation Problem, Management Science, Vol. 11, No. 1, Series A, Sciences, p. 188-202.
  • Basu M., Acharya D.P. (2002), On Quadratic Fractional Generalized Solid Bi-criterion Transportation Problem, The Korean Journal of Computational & Applied Mathematics 10(1-2), p. 131-143.
  • Bazaraa M.S., Sherali H.D., Shetty C.M. (1993), Nonlinear Programing. Theory and Algorithms, John Wiley & Sons Inc., New York - Chichester - Brisbane - Toronto - Singapore.
  • Chen M.S., Chuang C.C. (2000), An Extended Newsboy Problem with Shortage- level Constraints, International Journal of Production Economics 67 (2000) p. 269-337. H
  • Cooper L., LeBlanc L. (1977), Stochastic Transportation Problems and Other Network Related Convex Problems, Naval Research Logistics Ouarterlv 24 (2), p. 327-337.
  • Edgeworth, F.Y. (1888), The Mathematical Theory of Banking, Journal of the Royal Statistical Society 53, p. 113-127.
  • Gen M., Ida K., Choi J. (1999), Improved Genetic Algorithm for Bicriteria Generalized Transportation Problem, Research Reports Ashikaga Institute of Technology 28, pp. 297-303.
  • Glover F., Klingman D., Napier A. (1972), Basic Dual Feasible Solutions for a Class of Generalized Networks, Operations Research, Vol. 20, No. 1, p. 126- 136.
  • Goldberg A.V., Plotkin S.A., Tardos E. (1988), Combinatorial Algorithms for the Generalized Circulation Problem, SFCS'88 Proceedings of the 29th Annual Symposium on Foundations of Computer Science, p. 432-443.
  • Goto H. (2013), Multi-Item Newsvendor Problem with an Equality Resource Constraint, Asia-Pacific Journal of Operational Research 30, p. 1250041-1 - 1250041-17.
  • Gupta B., Gupta R. (1983), Multi-criteria Simplex Method for a Linear Multiple-objective Transportation Problem, Indian Journal of Pure and Applied Mathematics 14 (2), p. 222-232.
  • Holmberg K., Jomsten K.O. (1984), Cross Decomposition Applied to the Stochastic Transportation Problem, European Journal of Operational Research 17, p. 361-368.
  • Holmberg K (1995), Efficient Decomposition and Linearization Methods for the Stochastic Transportation Problem, Computational Optimization and Applications 4, p. 293-316.
  • Keshavarz E., Khorram E. (2011), A Fuzzy Bi-criteria Transportation Problem, Computers and Industrial Engineering 61 (4), p. 947-957.
  • Khouja M., Mehrez A., Rabinowitz G. (1996), A Two-item Newsboy Problem with Substitutability, International Journal of Production Economics 44, p. 267-275.
  • Khurana A., Arora S.R. (2011), Fixed Charge Bi-criterion Indefinite Quadratic Transportation Problem with Enhanced Flow, Revista Investigación Operacional 32 (133-145).
  • Kumar S.K., Lai I.B., Lai S.B. (2012), Fixed-charge Bi-criterion Transportation Problem, International Journal of Computer Application 2 (1), p. 39-42.
  • Li J. (2000), A Dynamic Transportation Model with Multiple Criteria and Multiple Constraint Levels, Mathematical and Computer Modelling 32, p. 1193- 1208.
  • Lourie J.R. (1964), Topology and Computation of the Generalized Transportation Problem, Management Science, Vol. 11, No. 1, Series A, Sciences, p. 177-187.
  • Nagurney A., Yu M., Masoumi A.H., Nagumey L.S. (2013), Networks against Time. Supply Chain Analytics for Perishable Products, Springer Briefs in Optimization, Springer.
  • Qi L. (1985), Forest Iteration Method for Stochastic Transportation Problem, Mathematical Programming Study 25, p. 142-163.
  • Qi L. (1987), The A-Forest Iteration Method for the Stochastic Generalized Transportation Problem, Mathematics of Operations Research Vol. 12 No 1 p. 1-21.
  • Shi Y. (1995), A Transportation Model with Multiple Criteria and Multiple Constraint Levels, Mathematical and Computer Modelling 21 (4), p. 13-28.
  • Sikora W. (1993), Modele i metody optymalnej dystrybucji dóbr, Zeszyty naukowe - seria II, Prace doktorskie i habilitacyjne, Akademia Ekonomiczna, Poznań.
  • Sikora W., Runka H., Przyński D. (1991), Optymalizacja przepływów w sferze dystrybucji dóbr jednorodnych, Gra nt no. H 990-02, Akademia Ekonomiczna, Poznań.
  • Sen A., Zhang A. X. (1999), The Newsboy Problem with Multiple Demand Classes, IEE Transactions 31, p. 431-444.
  • Yang P.C., Wee H.M., Chung S.L., Kang S.H. (2007), Constrained Optimization of a Newsboy Problem with Return Policy Using KKT Conditions and GA, New Trends in Applied Artificial Intelligence, Lecture Notes in Computer Science Vol. 4570, p. 227-237.
  • Wayne K.D. (2002), A Polynomial Combinatorial Algorithm for Generalized Minimum Cost Flow, Mathematics of Operations Research, Vol 27 No 3 p. 445-459.
  • Williams A.C. (1963), A Stochastic Transportation Problem, Operations Research 11.
Document Type
Publication order reference
Identifiers
ISSN
2084-1531
YADDA identifier
bwmeta1.element.desklight-36ec0a34-1bef-4a8b-8190-0c48afceac97
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.