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Introduction 
 

In the survey sampling the problem of estimation or prediction of 
subpopulations’ (domains’) characteristics has become very important issue. 
What is more, in the case of longitudinal surveys there is a possibility to increase 
the accuracy of the estimators or predictors by using information from other 
periods or even to estimate or predict subpopulation’s characteristic for the 
period when the number of sampled domain elements equals zero. Domains with 
small or zero sample sizes are called small areas. In small area estimation 
empirical versions of Henderson’s [1950] best linear unbiased predictors 
(BLUP) are widely used under different longitudinal area level models (see e.g.  
Rao [2003] chapter 8.3 and Rao and Yu [1994]). In the paper the class of unit 
level longitudinal models with auxiliary variables is proposed assuming that the 
population and the domains affiliation may change in time. In the paper the 
predictors which are empirical versions of Royall’s [1976] BLUP under some 
special cases of the proposed model are derived. They can be used to predict the 
domain total based on any longitudinal data (including e.g. random and 
purposive samples, panel data and rotating samples) for any (including future) 
periods. Their mean squared errors (MSEs) and MSEs’ estimators are also 
derived. In the Monte Carlo simulation study the problems of the accuracy of the 
predictor and biases of the MSE estimators are analyzed based on real data 
including several cases of model misspecification. The results of the simulation 
show that the proposed predictor and the proposed MSE estimator may perform 
very well even in some cases of model misspecification. 
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1. Basic notations 
 

Let us introduce some notation presented earlier by Żądło [2009b]. In the 
paper longitudinal data for periods t = 1,...,M are considered. In the period t the 
population of size tN is denoted by tΩ . The population in the period t is divided 

into D disjoint domains (subpopulations) dtΩ  of size dtN , where d = 1,...,D. Let 
the set of population elements for which observations are available in the period 
t be denoted by st and its size by nt. The set of domain elements for which 
observations are available in the period t is denoted by dts  and its size by ndt. 

Let: rdt dt dtsΩ = Ω − , rdt dt dtN N n= − . 

Let idM  denotes the number of periods when the ith population element 
may be potentially observed in the dth domain (when the ith population element 
belongs to the dth domain). Let us denote the number of periods when the ith 
population element (which belongs to the dth domain) is observed by idm . Let 

rid id idm M m= − . We assume that the population may change in time and that 
one population element may change its domain affiliation in time (from 
technical point of view observations of some population element which change 
its domain affiliation are treated as observations of new population element). 
It means that i and t completely identify domain affiliation but additional 
subscript d will be needed as well. More about this assumptions will be written 
at the end of the next section. 

The set of elements which belong at least in one of periods t = 1,...,M to sets 

tΩ  is denoted by Ω  and its size by N. Similarly, sets dΩ , s , ds , rdΩ  of sizes 

dN , n, dn , rdN  respectively are defined as sets of elements which belong at 

least in one of periods t = 1,...,M to sets dtΩ , ts , dts , rdtΩ  respectively. The 
d*th domain of interest in the period of interest t* will be additionally denoted by 
a symbol * in the subscript i.e. * *d tΩ , and the set of elements which belong at 

least in one of periods t = 1,...,M to sets * *d tΩ  will be denoted by *dΩ . 

Values of the variable of interest are realizations of random variables idjY  

for the ith population element which belongs to the dth domain in the period ijt , 

where i = 1,...,N, j = 1,...,Mid, d = 1,...,D. The vector of size 1idM ×  of random 

variables idjY  for the ith population element which belongs to the dth domain 

will be denoted by idjY⎡ ⎤= ⎣ ⎦idY , where 1,..., idj M= . Let us consider values of 
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the variables of interest ' ' 'i d jY  for the i’th population element which belongs to 

the d’th domain observed in periods ' 'i jt , where i’ = 1,...,n, j’ = 1,...,mi’d’,  

d’ = 1,...,D. The vector of random variables ' ' 'i d jY  (where i’ = 1,...,n,  

j’ = 1,...,mi’d’, d’ = 1,...,D) of size ' ' 1i dm ×  will be denoted by ' ' ' ' 'i d jY⎡ ⎤= ⎣ ⎦s i dY , 

where j’ = 1,...,mi’d’. The vector of random variables '' '' ''i d jY  of size '' '' 1ri dm ×  for 

the i’’th population element which belongs to the d’’th domain for observations 
which are not available in the sample is denoted by

 
'' '' '' '' ''i d jY⎡ ⎤= ⎣ ⎦r i dY , where 

 j’’ = 1,...,mri’’d’’. 

The proposed approach may be used to predict the domain total for any 
(past, current and future) periods. If the problem of prediction of the domain 
total for the future period is considered, the number of periods M includes future 
period or periods. What is more, in this case the division of the population into 
domains and values of the auxiliary variables in the future are assumed to be 
known. 

 
 

2. Superpopulation model 
  

We consider some class of superpopulation models (studied earlier by Żądło 
[2009b]) used for longitudinal data (compare Verbeke, Molenberghs, [2000]; 
Hedeker, Gibbons [2006]) which are – what is important for further 
considerations – special cases of the General Linear Model (GLM) and the 
General Linear Mixed Model (GLMM). The following two-stage model is 
assumed. Firstly: 

 
 = +id id id idY Z β e , (1) 
 
where i = 1,...,N; d = 1,...,D, idY  is a random vector of size 1idM × , idZ  is 

known matrix of size idM q× , idβ  is a vector of unknown parameters of size 

1q × , ide  is a random component vector of size 1idM × . Vectors ide   
(i = 1,...,N; d = 1,...,D) are independent with 0 vectors of expected values and 
variance-covariance matrices idR . Although idR  may depend on i it is often 

assumed that 2
eσ=

id
id M

R I  where 
idM

I  is the identity matrix of rank idM . 

Secondly, we assume that: 
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 = +id id idβ K β v , (2) 
 

where i = 1,...,N; d = 1,...,D, idK  is known matrix of size q p× , β  is a vector 

of unknown parameters of size 1p× , idv  is a vector of random components of 

size 1q × . It is assumed that vectors idv  (i = 1,...,N; d = 1,...,D) are independent 

with 0 vectors of expected values and variance-covariance matrix =idG H  
what means that idG  does not depend on i. 

Similar assumptions to (1) and (2) are presented by Verbeke, Molenberghs 
[2000, p. 20] but there are two differences. Firstly, in the book assumptions are 
made for profiles defined by elements. In this paper assumptions are made for 
profiles defined by elements and domains affiliation i.e. idY  (of size 1idM × ) 
what allows to take the possibility of population changes in time into account. 
Secondly, in the book the assumptions are made only for the sampled elements 
(i.e. i = 1,...,n). In this paper they are made for all of population elements  
(i = 1,...,N). 

Based on (1) and (2) it is obtained that: 
 

 = + +id id id id idY X β Z v e , (3) 
 
where i = 1,...,N; d = 1,...,D, =id id idX Z K  is known matrix of size idM p× . 

Let 2 ( )Dξ=id idV Y . Hence, 
 
 T= +id id id idV Z HZ R . (4) 

 

Let Ad be a column vector and 1 ( ) ... ...
TT T T

d D d d Dcol ≤ ≤ ⎡ ⎤= ⎣ ⎦1A A A A  

be a column vector obtained by stacking Ad vectors. Note that by stacking idY  
vectors (i.e. 1 1

( ( ))
d

d D i N
col col≤ ≤ ≤ ≤

= idY Y from (3) we obtain the formula of the 

GLMM. Let 2 ( )Dξ=V Y . Hence, 
 

 1 1 ( )
dd D i Ndiag diag≤ ≤ ≤ ≤= idV V  (5) 

 
Unknown elements of V will be denoted by δ. Let, 

1 1 ( )
dd D i ncol col≤ ≤ ≤ ≤=s sidY Y , 2 ( )Dξ=ss sV Y , 2 ( )Dξ=ssid sidV Y . Hence, 
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 1 1 1 1( ) ( )
d dd D i n d D i ndiag diag diag diag≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤= = +T

ss ssid sid sid sidV V Z HZ R  (6) 

 
where sidZ  is known matrix of size idm q× , 2 ( )Dξ=sid sidR e  and side  is 

1idm ×  random components vector. 
 
 
3. EBLUP, its MSE AND MSE estimator 

 
At the beginning let us compare BLUPs proposed by Henderson [1950]  

and Royall [1976]. Firstly, Royall derived the BLUP assuming the GLM which 
is generalization of the GLMM assumed by Henderson. Secondly, Royall 
predicts linear combination of Y given by Tθ = γ Y  what is more general then 
linear combination of β and v given by sθ = +T Tβl m v  studied by Henderson. 

Thirdly, in both cases linear predictors are considered: θ̂ = T
s sg Y  by Royall 

[1976] and ŝ bθ = +T
sa Y  by Henderson, which forms are equivalent because 

b = 0 under unbiasedness. Hence, Royall’s BLUP may be treated as the 
generalization of Henderson’s BLUP. In the paper the BLUP proposed by Royall 
is studied (and its empirical version – EBLUP) where the element k of the 
γ vector is given by: 

 

 
* *

* *

0 if
1 if

d t
k

d t

i
i

γ
∉Ω⎧

= ⎨ ∈Ω⎩
 (7) 

 
To obtain the BLUP of *d th domain total in *t th period and its MSE for 

model (3) general formulae proposed by Royall should be used with (7) and 
block-diagonal form of variance-covariance matrix (5). If the unknown 
parameters in the formula of the BLUP proposed by Royall are replaced by their 
estimates, two-stage predictor called the EBLUP is obtained. Kackar and 
Harville [1981] prove unbiasedness of empirical version of the BLUP proposed 
by Henderson under some weak assumptions. The proof of unbiasedness of 
empirical version of the BLUP proposed by Royall under similar weak 
assumptions (inter alia symmetric but not necessarily normal distribution of 
random components for the model assumed for the whole population), is 
presented in Żądło [2004]. The approximation of the MSE and its estimator for 
the empirical version of the BLUP proposed by Henderson are derived inter alia 
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by Prasad and Rao [1990] and Datta and Lahiri [2000]. The approximation of the 
MSE and its estimator for the empirical version of the BLUP proposed by Royall 
are derived in Żądło [2009a] based on results presented in Datta and Lahiri 
[2000]. 

 
 

4. Special cases of superpopulation model 
 

In the section we consider two special cases of the model (3). The first 
model is longitudinal random regression coefficient model similar to the one 
proposed in Dempster, Rubin and Tsutakawa [1981] and studied later e.g. in 
Moura and Holt [1999] and for one auxiliary variable in Prasad and Rao [1990]. 
Unlike the proposed longitudinal model, these authors only consider a model 
with domain-specific random effects (and for one period). We assume that: 

 
 ( ) ,idj d id idj idj d idj id idj idjY v x e x v x eβ β= + + = + +  (8) 

 
where i = 1,2,...,N; d = 1,2,...,D, 1, 2,..., idj M= . Special case of (8) where 
 
 d dβ β∀ =  (9) 
 
will also be considered. What is more (similarly to Verbeke, Molenberghs 
[2000]), we assume that idje  and idv  are mutually independent and 

2~ (0, )idj ee σ  and 2~ (0, )id vv σ . Hence, 

 

 2 2 2

2

0 if
( , ) if ,

if
idj i j d e idj v

idj i j d v

i i d d
Cov Y Y x i i j j

x x i i d d j j
ξ σ σ

σ
′ ′ ′

′ ′ ′

′ ′⎧ ≠ ∨ ≠
⎪ ′ ′= + = ∧ =⎨
⎪ ′ ′ ′= ∧ = ∧ ≠⎩

 (10) 

 
The second model is nested error regression models similar to the one 

proposed in Battese, Harter and Fuller [1988]. Unlike the proposed longitudinal 
model, these authors only consider a model with domain-specific random effects 
(and for one period). We assume that: 

 
 ,idj id idjY v e= + +idj dβx  (11) 
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where 1 2 ...idj idj idjpx x x⎡ ⎤= ⎣ ⎦idjx , idje  and idv  are mutually independent 

and 2~ (0, )idj ee σ  and 2~ (0, )id vv σ . Special case of (11) where: 
 
 d∀ =dβ β  (12) 
 
will also be considered. Hence, 
 

 2 2

2

0 if
( , ) if

if
idj i j d e v

v

i i d d
Cov Y Y i i j j

i i d d j j
ξ σ σ

σ
′ ′ ′

′ ′≠ ∨ ≠⎧
⎪ ′ ′= + = ∧ =⎨
⎪ ′ ′ ′= ∧ = ∧ ≠⎩

. (13) 

 
For all of the superpopulation models presented in this section the vector of 

unknown variance parameters will be denoted by 2 2 .
T

e vσ σ⎡ ⎤= ⎣ ⎦δ  

We have assumed that the population and the domain affiliation of 
population elements may change in time. Observations of new element of the 
population or observations of the population element after the change of its 
domain affiliation are treated as realizations of new profile (3). Hence, because 
of the covariance structure (5) where nonzero covariances are only within 
profiles, we assume the lack of correlation of observations for some population 
element before and after the change of the domain affiliation. 

 
 

5. Prediction under a longitudinal random  
regression coefficient model 

 
Based on Royall’s theorem [1976], it is possible to derive the BLUP of the 

*d th domain total in the *t th (past, current or future) period and its MSE under 
longitudinal simple random regression coefficient model (8). They are given by: 

 

 
* * * * *

* * * * * * * * * * * *

* *

2 1

1 1 1

ˆ ˆ ˆ( )
rd t rd t id

d t

N N m

BLU vid t d id t id t id id j id j id j d
i s i i j

Y x x b x Y xθ β σ β−

∈ = = =

= + + −∑ ∑ ∑ ∑  (14) 

 

where 
* * * *

* * * * * *

1

1 2 1

1 1 1 1

ˆ ,
d id d id

n m n m

d id id j id id j id j
i j i j

b x b Y xβ
−

− −

= = = =

⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∑ ∑ ∑ ∑  

*

* *
2 2 2

1

id
m

e vid id j
j

b xσ σ
=

= + ∑  
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and 
 
 1 2

ˆ( ) ( ) ( )BLUMSE g gξ θ = +δ δ  (15) 

 
where: 
 

 
* * * * *

* * * * * * *
2 2 2 4 2 1 2

1 *
1 1 1

( )
rd t rd t id

N N m

e v v idrd t id t id t id j
i i j

g N x x b xσ σ σ −

= = =

= + −∑ ∑ ∑δ  (16) 

 

 
* * * * * * *

* * * * * *

2 1

2 1 2 1 2
2 * *

1 1 1 1 1
( ) .

rd t rd t id d id
N N m n m

v id idid t id t id j id j
i i j i j

g x x b x b xσ
−

− −

= = = = =

⎛ ⎞ ⎛ ⎞
= −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∑ ∑ ∑ ∑ ∑δ  (17) 

 

Let the unknown variance parameters in (14) be replaced by their maximum 
likelihood (ML) or restricted maximum likelihood (REML) estimates under 
normality. Hence, we obtain the two-stage predictor called EBLUP. Using 
general theorems proved in Żądło [2009a] it is possible to derive the formula of 
the MSE of the EBLUP and its estimators. Firstly, under assumptions presented 
in Żądło [2009a] (including the GLMM with block-diagonal variance-
covariance matrix and normality of random components) the MSE in this case is 
given by: 
 
 * 1

1 2 3
ˆ( ) ( ) ( ) ( ) ( )EBLUMSE g g g o Dξ θ

−= + + +δ δ δ  (18) 

 
where 1 ( )g δ  and 2 ( )g δ  are given by (16) and (17) respectively and 
 

 ( )
* * *

* * *
* 2 3 2 ( 1) 4 ( 1) 2 2 ( 1) 4
3 *

1 1
( ) 2

rd t id
N m

id vv v ve e v ee eid t id j
i j

g x b x I I Iσ σ σ σ− − − −

= =

= − +∑ ∑δ  (19) 

 
and 
 

 
2

( 1) 1 2 2

1 1 1

2 ,
d idn mD

vv id idj
d i j

I b b x− − −

= = =

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑∑ ∑  (20) 
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 ( 1) 1 2 2

1 1 1

2 ,
d idn mD

ve id idj
d i j

I b b x− − −

= = =

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
∑∑ ∑  (21) 

 

 ( )( 1) 1 4 2

1 1

2 ( 1) ,
dnD

ee id e id
d i

I b m bσ− − − −

= =

= − +∑∑  (22) 

 
and 
 

( )
2

4 2 2 2

1 1 1 1 1

2

2 2

1 1 1

( 1)
d d id

d id

n n mD D

id e id id idj
d i d i j

n mD

id idj
d i j

b m b b x

b x

σ − − −

= = = = =

−

= = =

⎛ ⎞⎛ ⎞⎛ ⎞ ⎜ ⎟= − + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞
−⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑∑ ∑∑ ∑

∑∑ ∑
 

 
Secondly, under general assumptions presented in Żądło [2009a] (including 

the GLMM with block-diagonal variance-covariance matrix and normality of 
random components) the approximately unbiased (its bias is 1( )o D− ) estimator 
of the MSE (18) for REML estimators of δ in this case is given by: 

 
 *

1 2 3
ˆ ˆ( ) ( ) ( ) 2 ( )EBLUMSE g g gξ θ = + +δ δ δ  (23) 

 
and for ML estimators of δ by 
 

*
1 2 3

ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) 2 ( )EBLUMSE g g gξ θ = + + +δ δ δ  

 1 1 1
1

ˆ1 ( )ˆ ˆ ˆ( ) ( ) ( )
2

T

k q
k

gcol tr
δ

− −
≤ ≤

⎡ ⎤⎡ ⎤∂ ∂
− ⎢ ⎥⎢ ⎥∂ ∂⎣ ⎦⎣ ⎦

βδ β
δI δ I δ I δ
δ

 (24) 

 
where *

1 2 3
ˆ ˆ ˆ( ), ( ), ( )g g gδ δ δ  are given by (16), (17), (19) respectively where δ is 

replaced by δ̂ , 
( 1) ( 1)

1
( 1) ( 1)
vv ve

ve ee

I I
I I

− −
−

− −

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

δI , where ( 1)
vvI − , ( 1)

veI − , ( 1)
eeI −  are given by (20), 

(21), (22) respectively, 1
1

ˆ ˆ( ) ( )k q
k

col tr
δ

−
≤ ≤

⎡ ⎤∂
⎢ ⎥∂⎣ ⎦

β βI δ I δ  and 1
ˆ( )g∂

∂
δ
δ

 are given by 
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1

1 2 2 2

1 1 1 1 1
1

1 1 2

1 2 2 2

1 1 1 1 1

( ) ( )

d id d id

d id d id

n m n mD

id idj id idj
d i j i j

k q
n m n mDk

id idj id idj
d i j i j

b x b x

col tr

b x b x
δ

−

− −

= = = = =
−

≤ ≤ −

− −

= = = = =

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎡ ⎤∂

= −⎢ ⎥⎢ ⎥ ⎛ ⎞∂ ⎢ ⎥⎛ ⎞ ⎛ ⎞⎣ ⎦
⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠ ⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑
β βI δ I δ  (25) 

 
and 
 

1 1 1
2 2

( ) ( ) ( )
T

e v

g g g
σ σ

⎡ ⎤∂ ∂ ∂
= =⎢ ⎥∂ ∂ ∂⎣ ⎦

δ δ δ
δ

 

 

 

* * *

* * * * *

* * * * * *

* * * * * *

4 2 2 2
*

1 1

2

2 4 2 1 2 1 2
* *

1 1 1 1

2

rd t id

rd t rd t id id

N m

v idrd t id t id j
i j

N N m m

v id idid t id t id j id j
i i j j

N x b x

x x b x b x

σ

σ

−

= =

− −

= = = =

⎡ ⎤
−⎢ ⎥

⎢ ⎥
= ⎢ ⎥⎛ ⎞⎛ ⎞⎢ ⎥⎜ ⎟+ − ⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∑

∑ ∑ ∑ ∑
 (26) 

 
respectively, where δ is replaced by δ̂ . 
 

Under assumptions (8) and (9) the equations presented above remain true 
but *

ˆ
dβ  in (14) should be replaced by 
 

1

1 2 1

1 1 1 1 1 1

ˆ ,
d id d idn m n mD D

id idj id idj idj
d i j d i j

b x b Y xβ
−

− −

= = = = = =

⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∑∑ ∑ ∑∑ ∑  

 

2 ( )g δ  given by (17) should by replaced by 
 

* * * * *

* * * * *

2 1

2 1 2 1 2
2 *

1 1 1 1 1 1
( )

rd t rd t id d id
N N m n mD

v id id idjid t id t id j
i i j d i j

g x x b x b xσ
−

− −

= = = = = =

⎛ ⎞ ⎛ ⎞
= −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
∑ ∑ ∑ ∑∑ ∑δ  

 

and 1
1 ( ) ( )k q

k

col tr
δ

−
≤ ≤

⎡ ⎤∂
⎢ ⎥∂⎣ ⎦

β βI δ I δ  given by (25) should be replaced by: 
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1

1 2 2 2

1 1 1 1 1 1
1

1 1 2

1 2 2 2

1 1 1 1 1 1

( ) ( )

d id d id

d id d id

n m n mD D

id idj id idj
d i j d i j

k q
n m n mD Dk

id idj id idj
d i j d i j

b x b x

col tr

b x b x
δ

−

− −

= = = = = =
−

≤ ≤ −

− −

= = = = = =

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎡ ⎤∂

= − ⎢ ⎥⎢ ⎥ ⎛ ⎞∂ ⎢ ⎥⎛ ⎞ ⎛ ⎞⎣ ⎦
⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠ ⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

∑∑ ∑ ∑∑ ∑

∑∑ ∑ ∑∑ ∑
β βI δ I δ  

 
 
6. Prediction under a longitudinal nested  

error regression model 
 

Based on Royall’s theorem [1976], it is possible to derive the BLUP of the 
*d th domain total in *t th (past, current or future) period and its MSE under 

longitudinal nested error regression coefficient model (11). The BLUP is 
given by: 

 

 
* * * * *

* * * * * * * * *

* *

2 1

1 1 1

ˆ ˆ ˆ( ),
rd t rd t id

d t

N N m

vid t id id j
i s i i

BLU
j

Y b Yθ σ −

∈ = = =

= + + −∑ ∑ ∑ ∑id t d id j d
x β x β  (27) 

 

where * *
2 2
e vid id

b mσ σ= + , 
* *

* * * * * * *

1

1 1

1 1

ˆ d d
n n

id id
i i

b b
−

− −

= =

⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∑ ∑T T

d sid sid sid sid
Yβ X X X  and 

*sid
X  is *id
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If the unknown variance parameters in (27) are replaced by their ML or 
REML estimates under normality we obtain the EBLUP with the MSE given by 
general formula (18), where 1 ( )g δ  and 2 ( )g δ  are given by (28) and (29) 
respectively and 
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The approximately unbiased (its bias is 1( )o D− ) estimator of the MSE of 

the EBLUP for the REML estimators of δ is given by (23) and for the ML 
estimators of δ by (24) where 1

ˆ( )g δ , 2
ˆ( )g δ , *

3
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respectively, where δ is replaced by δ̂ . 
 

Under assumptions (11) and (12) the equations presented above remain true 
but *
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d
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and 2 ( )g δ  given by (29) should be replaced by 
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and 1
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7. Simulation analyses 
 

The limited Monte Carlo simulation analyses are based on real data on  
N = 314 Polish poviats (what is NUTS 4 level) excluding cites with poviat’s 
rights for M = 4 years 2005-2008. Data are available at the website of the Polish 
Central Staistical Office – www.stat.gov.pl. The problem is to estimate 
subpopulations (domains) totals for D = 6 regions (NTS 1 level) in 2008. The 
variable of interest is poviats’ own incomes (in PLN) and the auxiliary variable 
is the population size in poviats (in persons). Two simulations are conducted 
using R (R Development Core Team [2011]). In the simulations the accuracy of 
the proposed predictor is compared with accuracies of two calibration estimators 
[Rao 2003, pp. 17-18] which will be denoted by GREG1 and GREG2. Both 
calibration estimators are of the form * * * *

* *
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and for GREG2 are subsequence of weights obtained as a solution of 
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where *it

π  are inclusion probabilities in the period *t . These calibration 

estimators are classic model-assisted estimators which are known as good 
alternatives for model-based methods especially in the case of possible model 
misspecification. 

The first simulation is design-based. In this case a sample of size n = 79 
elements (c.a. 25% of population size) is balanced panel sample (each sampled 
element is observed in all of 4 periods), which is drawn at random in the first 
period with inclusion probabilities proportional to the value of the auxiliary 
variable in this period. For this sample size it was possible to estimate all of 
domain totals in each iteration even using direct estimators GREG1 and GREG2. 
The number of samples drawn in the simulation equals 10 000. 

The second simulation is model based. In this case one sample is drawn 
using the sample design described above what gives the division of the 
population into the sampled and unsampled part. Then 10 000 populations are 
generated using model (11) – (with one auxiliary variable and constant) with 
parameters computed (REML) based on real, whole population data and random 
components with the following distributions: in the model denoted in the 
simulation as N case – normal distributions of both random components, U case 
– uniform distributions of both random components and E case – "shifted" 
exponential distribution of both random components. What is more, to study the 
problem of model misspecification, equations for linear model are used but 
10 000 population are generated based on modified model (11) where instead of 
the auxiliary variable its natural logarithm is used. Both random components 
have the following distributions: Nm case – normal distribution, Um – uniform 
distribution and Em – "shifted" exponential distribution. 

What is important, the predictor presented for the model (11) simplifies to 
the BLUP (i.e. does not depend on unknown variance parameters) for the 
balanced sample. Hence, in the equation of the MSE estimator the *

3 ( )g δ  
element is omitted. 
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Fig. 1.  Relative model-biases (on the left) and relative model RMSE (on the right) for N case (in 
%) for six domains 

 

 
 

Fig. 2.  Relative model-biases (on the left) and relative model RMSE (on the right) for U case (in 
%) for six domains 

 

 
 

Fig. 3.  Relative model-biases (on the left) and relative model RMSE (on the right) for E case (in 
%) for six domains 
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Fig. 4.  Relative model-biases (on the left) and relative model RMSE (on the right) for Nm case 
(in %) for six domains 

 

 
 

Fig. 5.  Relative model-biases (on the left) and relative model RMSE (on the right) for Um case 
(in %) for six domains 

 

 
 

Fig. 6.  Relative model-biases (on the left) and relative model RMSE (on the right) for Em case 
(in %) for six domains 
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Fig. 7.  Relative biases of MSE estimators of BLUP for REML (on the left) and ML (on the right) 

estimates of δ (in %) for six domains 
 

 
 
Fig. 8.  Relative design-biases (on the left) and relative design RMSE (on the right) for six 

domains in % 
 

Each point on the figures presents value of some statistic for one out of  
D = 6 domains. Comparing prediction accuracy of the BLUP and GREG1 and 
GREG2 (see Figures 1-6) it should be noted that the BLUP is better then both 
GREG estimators even in the cases of model misspecification. The absolute 
value of its relative bias does not exceed 10% for all of the considered cases of 
model misspecification (see Figures 4-6). The bias of the considered MSE 
estimator under normality is 1( )o D−  (as proved in Żądło [2009a]) but for the 
data interesting case is studied – the number of domains is very small, it equals 
D = 6. It is known that for the big number of domains D the differences between 
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biases of REML and ML MSE esimators (given by general equations (23) and 
(24) respectively) are small. In the simulation study the REML MSE estimator is 
(see Figure 7) less biased in all of the considered cases, what may have occured 
due to the relatively big (comparing with D) loss of degrees of freedom when 
ML method is used instead of REML to estimate δ. Let us limit further 
consideration to the REML MSE estimator. The absolute values of relative 
biases of MSE estimators (see Figure 7) are small not only under normality 
assumptions (N case), under which they were derived, but also for U and 
E cases. For the proof of robustness of some MSE estimators of the EBLUP of 
the form of Henderson’s BLUP in some cases of model misspecification see 
Lahiri and Rao [1995]. The maximum absolute value of the relative biases of 
MSE estimators are less then 2,1% for these cases. When the true model is non-
linear (the Nm, Um, Em cases) the biases obtained in the simulation are larger. 

Results presented on the Figure 8 show that the design bias of the BLUP is 
larger than the design bias of both GREG1 and GREG2. Comparing the design 
accuracy for the data and large sample size (n = 79), the BLUP is better than 
GREG2 but worse than GREG1. 

 

 

Conclusions 
 

In the paper the EBLUP for longitudinal data is proposed. The predictor 
allows to predict the domain total for any (past, current, future) period assuming 
that population and domain affiliation of population elements may change in 
time. Its MSE is also derived and some MSE estimator is proposed. Its accuracy 
is analyzed for real data in the Monte Carlo simulation study. 
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O PEWNYCH PROBLEMACH PREDYKCJI WARTOŚCI GLOBALNEJ 
W DOMENIE W BADANIACH WIELOOKRESOWYCH,  

GDY SĄ DOSTĘPNE INFORMACJE O ZMIENNYCH DODATKOWYCH 
 

Streszczenie 
 

W artykule wyprowadzono postacie najlepszych liniowych nieobciążonych predyk-
torów przy założeniu pewnych modeli będących uogólnieniami na przypadek danych 
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przekrojowo-czasowych modeli znanych z literatury statystyki małych obszarów. Ponad-
to wyprowadzono postacie błędów średniokwadratowych empirycznych wersji tych pre-
dyktorów oraz zaproponowano ich estymatory. W symulacji Monte Carlo porównywano 
dokładność zaproponowanego predyktora z dwoma ogólnymi estymatorami regresyjny-
mi po planie losowania i po modelu nadpopulacji (także w różnych przypadkach złej 
specyfikacji modelu). Ponadto analizowano obciążenia zaproponowanych estymatorów 
błędu średniokwadratowego. 
 


