Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2020 | vol. 24, nr 2 | 53-85

Article title

A review of the binomial and trinomial models for option pricing and their convergence to the Black-Scholes model determined option prices

Content

Title variants

PL
Przegląd dwumianowych i trójmianowych modeli wyceny opcji i ich zbieżność do modelu Blacka-Scholesa określającego wycenę opcji

Languages of publication

EN

Abstracts

EN
This paper reviews the binomial and trinomial option pricing models and their convergence to the Black-Scholes model result. These models are generalized for the European and American options. The trinomial models are said to be more accurate than the binomial when fewer steps are modelled. These models are widely used for the usual vanilla option types, European or American options, that respectively can be exercised only at the expiration date and at any time before the expiration date. The results are supportive of the conventional wisdom that trinomial option pricing models such as the Kamrad-Ritchken model and the Boyle model are converging faster than the binomial models. When binomial models are compared in terms of convergence, the most efficient model is the Jarrow-Rudd model. This paper concludes that improved binomial models such as the Haahtela model are converging faster to the BS model result. After some trials, binomial distribution follows log-normal distribution assumed by the Black-Scholes model.
PL
W artykule dokonano przeglądu modeli wyceny opcji dwumianowych i trójmianowych oraz ich zbieżności z wynikami zastosowania modelu Blacka-Scholesa (BS). Przeprowadzono uogólnienie modeli dla opcji europejskich i amerykańskich. W literaturze wskazuje się, że modele trójmianowe w przypadku mniejszej liczby kroków dają bardziej dokładne wyniki niż modele dwumianowe. Modele te są szeroko stosowane dla zwykłych typów opcji waniliowych, opcji europejskich lub amerykańskich, które odpowiednio można wykonać tylko w dniu wygaśnięcia i w dowolnym momencie przed datą wygaśnięcia. Otrzymane wyniki potwierdzają konwencjonalną teorię, że trójmianowe modele wyceny opcji, takie jak model Kamrada-Ritchkena i model Boyle’a, są szybciej zbieżne niż modele dwumianowe. W porównaniu modeli dwumianowych pod względem konwergencji najbardziej efektywnym modelem jest model Jarrowa-Rudda. W artykule zaprezentowano wyniki wskazujące, że ulepszone modele dwumianowe, takie jak model Haahtela, są szybciej zbieżne do wyników uzyskanych z modelu BS. Po przeprowadzeniu kilku prób wskazano, że rozkład dwumianowy

References

  • Akerlof, G. (2002). Behavioral macroeconomics and macroeconomic behavior. The American Economic Review, 92(3), 411-433.
  • Bates, D. (1996). Jumps and stochastic volatility: Exchange rate processes implicit in Deutschemark options. Review of Financial Studies, (9), 69-108.
  • Black, F., and Scholes, M. (1973). The pricing of options and corporate liabilities. The Journal of Political Economy, 81(3), 637-654.
  • Bowei, C., and Wang, J. ( 2015). A lattice framework for pricing display and options with the stochastic volatility model. Electronic Commerce Research and Applications, 14(6), 465-479.
  • Boyle, P. (1986). Option valuation using a three-jump process. International Options Journal, (3), 7-12.
  • Boyle, P. (1988). A lattice framework for option pricing with two state variables. Journal of Financial and Quantitative Analysis, 3, 1-12.
  • Campbell, J., and Shiller, R. J. (1987). Cointegration and tests of present value models. Journal of Political Economy, (97), 1062-1088.
  • Carr, P., and Madan, B. D. (1999). Option valuation using the fast Fourier transform. Quantitative Finance, (1), 19-37.
  • Cootner, P. H. (1964). The random character of stock market prices. Cambridge, Mass.: MIT Press.
  • Cox, J. C., and Ross, S. A. (1975). The pricing of options for Jump processes. Rodney L. White Center for Financial Research (Working Paper No. 2-75). University of Pennsylvania, Philadelphia, PA.
  • Cox, J. C., and Ross, S. A. (1976). The valuation of options for alternative stochastic processes. Journal of Financial Economics, (3), 145-166.
  • Cox, J. C., Ross, S. A., and Rubinstein, M. (1979). Option pricing: A simplified approach. Journal of Financial Economics, 7(3), 229.
  • Fama, E. (1970). Efficient capital markets: A review of theory and empirical work. Journal of Finance, 25(2), 383-417.
  • Gurdip, B., and Chen, Z. (1997). An alternative valuation model for contingent claims. Journal of Financial Economics, 44(1), 123-165.
  • Haahtela, T. (2010). Recombining trinomial tree for real option valuation with changing volatility. Aalto University (Working Paper Series).
  • Heston, S. (1993). A closed-form solution for options with stochastic volatility with applications to bond and currency options. Review of Financial Studies, (6), 327-343.
  • Hull, J. C. (2017). Options, Futures, and Other Derivatives, Pearson.
  • Jarrow, R., and Rudd, A. (1983). Option pricing. Homewood, Illinois.
  • Kamrad, B., and Ritchken, P. (1991). Multinomial approximating models for option with k states variables. Management Sciences, 37(23), 1640-1652.
  • Kiyosi, I. (1944). Stochastic integral. Proc. Imperial Acad. Tokyo, (20), 519-524.
  • Leisen, D., and Reimer, M. (1996). Binomial models for option valuation – examining and improving convergence. Applied Mathematical Finance, 3(4), 319-346.
  • Merton, R. C. (1973), Theory of rational option pricing. Bell Journal of Economics, 4(1), p. 141-183.
  • Merton, R. C. (1973a). Continuous-time speculative processes': Appendix to Paul A. Samuelson's 'mathematics of speculative price'. SIAM Review 15 (January 1973), 34-38.
  • Merton, R. C. (1973b). An intertemporal capital asset pricing model. Econometrica, 41(5), 867-887.
  • Merton, R. C. (1973c). The relationship between put and call option prices: Comment. Journal of Finance, 28(1), 183-184
  • Merton, R. C. (1975). Option pricing when underlying stock returns are discontinuous. Journal of Financial Economics, (3), 125-144.
  • Merton, R. C., and Samuleson, P. (1974). Fallacy of the log-normal approximation to optimal portfolio decision-making over many periods. Journal of Financial Economics, 1(1), 67-94.
  • Peizer, D. B., and Pratt, J. W. (1968). A normal approximation for binomial, f, beta, and other common related tail probabilities, I, The Journal of the American Statistical Association, (63), 1416-1456.
  • Pratt, J. W. (1968). A normal approximation for binomial, f, beta, and other common, related tail probabilities, II. The Journal of the American Statistical Association, (63), 1457-1483.
  • Puspita, E., Agustina, F., and Sispiyati, R. (2013). Convergence numerically of trinomial model in European option pricing. International Research Journal of Business Studies, 6(3), 195-201.
  • Rendleman, R., and Bartter, B. (1979). Two-state option pricing. Journal of Finance, (24), 1093-1110.
  • Rendleman, R., and Bartter, B. (1980). The pricing of options on debt securities. Journal of Financial and Quantitative Analysis, (15), 11-24..
  • Romer, D. H. (1993). Rational asset-price movements without news. The American Economic Review, 83(5), 1112-1130.
  • Ross, S., (1976). The arbitrage theory of capital asset pricing. Journal of Economic Theory, 13(3), 341-360. doi:10.1016/0022-0531(76)90046-6
  • Samuelson, P. A. (1965). Rational theory of warrant pricing. Industrial Management Review, (6), 13-31.
  • Scott, L. (1997). Pricing stock options in a jump-diffusion model with stochastic volatility and interest rates: Application of Fourier inversion methods. Mathematical Finance, (7), 413-426.
  • Smith, C. W. (1976). Option pricing: A review. Journal of Financial Economics, 3(1-2), 3-51.
  • Tian, Y. (1993). A modified lattice approach to option pricing. Journal of Futures Markets, 13(5), 563-577.
  • Trigeorgis, L. (1991). A log-transformed binomial analysis method for valuing complex multi-option investments. Journal of Financial and Quantitative Analysis, 26(3), 309-326.
  • Wilmott, P., Howison, S., and Dewynne, J. (1997). The mathematics of financial derivatives: A student introduction (2 ed.). Cambridge University Press.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.desklight-5555f233-60d0-4570-8ee2-a42ba303526a
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.