PL EN


2020 | vol. 64, nr 8 | 54-71
Article title

A timefrequency analysis of the housing construction time as the basis for making decisions on the construction market (the case study of Poland)

Content
Title variants
PL
Analiza czasowo-częstotliwościowa czasu budowy nieruchomości mieszkaniowych jako podstawa podejmowania decyzji na rynku budowlanym (studium przypadku Polski)
Languages of publication
EN
Abstracts
EN
Due to the increasingly complex market situation characterized by the growing variability of its determinants, making accurate decisions is riddled with an increasing risk of error. Widely used economic methods for analyzing market phenomena with a trajectory of time series has proved insufficient in many cases. Hence, it becomes necessary to seek more precise analytic methods, based on which it is be possible to obtain more precise mapping and relations in real-life activities. The goal of the present study is to apply the time-frequency analysis in the domain of real estate. Based on the application of, among others, Savitzky-Golay filtering, spectral density analysis, or cross-correlation, the time-frequency analysis will render it possible to precisely identify the parameters that selectively determine the housing market. The obtained results will make it possible to decrease the informational gap in the investment decision-making process in the housing market.
PL
Ze względu na coraz bardziej złożoną sytuację rynkową, charakteryzującą się rosnącą zmiennością determinantów ją określających, podejmowanie trafnych decyzji jest obarczone zwiększającym się ryzykiem popełnienia błędu. Metody stosowane w naukach ekonomicznych do analizy zjawisk rynkowych mających przebiegi szeregów czasowych stają się niewystarczające do poprawnego modelowania zjawisk rynkowych. Konieczne staje się poszukiwanie precyzyjniejszych metod analitycznych, pozwalających uzyskać dokładniejsze odwzorowania i zależności występujące w sferze działań realnych. Celem badań jest zastosowanie analizy czasowo-częstotliwościowej w sektorze nieruchomości. Analiza ta, bazująca na wykorzystaniu m.in. filtracji Savitky̕ego-Golaya, analizy widmowej czy korelacji krzyżowej, pozwoli możliwie precyzyjnie sparametryzować wybrane determinanty wpływające na rynek nieruchomości mieszkaniowych. Otrzymane wyniki pozwolą na zmniejszenie luki informacyjnej w podejmowaniu decyzji inwestycyjnych na rynku nieruchomości mieszkaniowych.
References
  • Badarinza, C., and Ramadorai, T. (2018). Home away from home? Foreign demand and London house prices. Journal of Financial Economics, 130(3), 532-555. DOI: 10.1016/j.jfineco.2018.07.010
  • Bessler, W., Kurmann, P., and Nohel, T. (2015). Time-varying systematic and idiosyncratic risk exposures of US bank holding companies. Journal of International Financial Markets, Institutions and Money, (35), 45-68. DOI: 10.1016/j.intfin.2014.11.009
  • Cheung, S. O., Wong, P. S. P., Fung, A. S. Y., and Coffey, W. V. (2006). Predicting project performance through neural networks. International Journal of Project Management, 24(3), 207-215. https://doi.org/10.1016/j.ijproman.2005.08.001
  • Coombs, W. T., and Laufer, D. (2018). Global crisis management – current research and future directions. Journal of International Management, 24(3), 199-203. DOI: 10.1016/j.intman.2017.12.003
  • De Witte, K., Geys, B., and Schönhage, N. L. (2018). Strategic public policy around population thresholds. Journal of Urban Economics, (106), 46-58. DOI: 10.1016/j.jue.2018.06.001
  • Degl’Innocenti, M., Grant, K., Šević, A., and Tzeremes, N. G. (2018). Financial stability, competitiveness and banks’ innovation capacity: Evidence from the Global Financial Crisis. International Review of Financial Analysis, (59), 35-46. DOI: 10.1016/j.irfa.2018.07.009
  • Devaney, S., and Xiao, Q. (2017). Cyclical co-movements of private real estate, public real estate and equity markets: A cross-continental spectrum. Journal of Multinational Financial Management, 42-43, 132-151. DOI: 10.1016/j.mulfin.2017.10.002
  • Dineen, D., and Gallachóir, B. P. Ó. (2011). Modelling the impacts of building regulations and a property bubble on residential space and water heating. Energy and Buildings, 43(1), 166-178. DOI: 10.1016/j.enbuild.2010.09.004
  • Eirinaki, M., Dhar, S., Mathur, S., Kaley, A., Patel, A., Joshi, A., and Shah, D. (2018). A building permit system for smart cities: A cloud-based framework. Computers, Environment and Urban Systems, (70), 175-188. DOI: 10.1016/j.compenvurbsys.2018.03.006
  • Farrelly, K., and Stevenson, S. (2019). The risk and return of private equity real estate funds. Global Finance Journal, (42), 100471. DOI: 10.1016/j.gfj.2019.04.005
  • Fernandez, L., Mukherjee, M., and Scott, T. (2018). The effect of conservation policy and varied open space on residential property values: A dynamic hedonic analysis. Land Use Policy, (73_, 480-487. DOI: 10.1016/j.landusepol.2017.12.058
  • Fernández, M. D., Marrón, M. L., and Rodríguez, P. M. (2016). Condiciona la población la dinámica de la actividad inmobiliaria? Un análisis de cointegración para el caso español. Investigacion Economica, 75(297), 103-124. DOI: 10.1016/j.inveco.2016.08.003
  • Gallegati, M., and Delli Gatti, D. (2018). Macrofinancial imbalances in historical perspective: A global crisis index. Journal of Economic Dynamics and Control, (91), 190-205. DOI: 10.1016/j.jedc.2018.01.026
  • Gluszak, M., and Zygmunt, R. (2018). Development density, administrative decisions, and land values: An empirical investigation. Land Use Policy, (70), 153-161. DOI: 10.1016/j.landusepol.2017.10.036
  • Hui, E. C. M., Liang, C., Zhong, J., and Ip, W. C. (2016). Capture the abrupt changes in Asian residential property markets. Habitat International, (56), 235-244. DOI: 10.1016/j.habitatint.2016.06.005
  • La, L., and Mei, B. (2015). Portfolio diversification through timber real estate investment trusts: A cointegration analysis. Forest Policy and Economics, (50), 269-274. DOI: 10.1016/j.forpol.2014.07.003
  • Lam, B. S. Y., Yu, C. K. W., Choy, S. K., and Leung, J. K. T. (2016). Jump point detection using empirical mode decomposition. Land Use Policy, (58), 1-8. https://doi.org/10.1016/j.landusepol.2016.07.006
  • Leone, V., and de Medeiros, O. R. (2015). Signalling the Dotcom bubble: multiple changes in persistence approach. Quarterly Review of Economics and Finance, (55), 77-86. DOI: 10.1016/j.qref.2014.08.006
  • Li, X., Sun, M., and Boersma, K. (2019). Policy spillover and regional linkage characteristics of the real estate market in China’s urban agglomerations. Journal of Management Science and Engineering, 4(3), 189-210. DOI: 10.1016/j.jmse.2019.05.004
  • Makin, A. J. (2019). Lessons for macroeconomic policy from the global financial crisis. Economic Analysis and Policy, (64), 13-25. DOI: 10.1016/j.eap.2019.07.008
  • Manjunath S.V., Baghel, R. S., and Kumar, M. (2019). Performance evaluation of cement–carbon composite for adsorptive removal of acidic and basic dyes from single and multi-component systems. Environmental Technology and Innovation, (16), 100478. DOI: 10.1016/j.eti.2019.100478
  • McAllister, P., Shepherd, E., and Wyatt, P. (2018). Policy shifts, developer contributions and land value capture in London 2005–2017. Land Use Policy, (78), 316-326. DOI: 10.1016/j.landusepol.2018.06.047
  • Murray, C. K. (2018). Developers pay developer charges. Cities, 74, 1-6. DOI: 10.1016/j.cities. 2017.10.019
  • Piao, X., Mei, B., and Xue, Y. (2016). Comparing the financial performance of timber REITs and other REITs. Forest Policy and Economics, (72), 115-121. DOI: 10.1016/j.forpol.2016.06.022
  • Ranjan, P., Wardropper, C. B., Eanes, F. R., Reddy, S. M. W., Harden, S. C., Masuda, Y. J., and Prokopy, L. S. (2019). Understanding barriers and opportunities for adoption of conservation practices on rented farmland in the US. Land Use Policy, (80), 214-223. DOI: 10.1016/j.landusepol.2018.09.039
  • Taderera, M., and Akinsomi, O. (2020). Is commercial real estate a good hedge against inflation? Evidence from South Africa. Research in International Business and Finance, (51), 101096. DOI: 10.1016/j.ribaf.2019.101096
  • Vuuren, A. van, Kjellander, J., and Nilsson, V. (2019). Refugees and apartment prices: A case study to investigate the attitudes of home buyers. Regional Science and Urban Economics, (77), 20-37. DOI: 10.1016/j.regsciurbeco.2019.02.003
  • Viggers, H., Keall, M., Wickens, K., and Howden-Chapman, P. (2017). Increased house size can cancel out the effect of improved insulation on overall heating energy requirements. Energy Policy, (107), 248-257. DOI: 10.1016/j.enpol.2017.04.045
  • Yigitcanlar, T., Kamruzzaman, M., Buys, L., Ioppolo, G., Sabatini-Marques, J., da Costa, E. M., and Yun, J. H. J. (2018). Understanding ‘smart cities’: Intertwining development drivers with desired outcomes in a multidimensional framework. Cities, (81), 145-160. DOI: 10.1016/j.cities.2018.04.003
  • Zhang, Q., and Su, S. (2016). Determinants of urban expansion and their relative importance: A comparative analysis of 30 major metropolitans in China. Habitat International, (58), 89-107. DOI: 10.1016/j.habitatint.2016.10.003
  • Zheng, X., Xia, Y., Hui, E. C. M., and Zheng, L. (2018). Urban housing demand, permanent income and uncertainty: Microdata analysis of Hong Kong’s rental market. Habitat International, (74), 9-17. DOI: 10.1016/j.habitatint.2018.02.004
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.desklight-55ab02d1-889b-4d82-868b-93e4372d7de1
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.