PL EN


2016 | 25 | 1 | 51-56
Article title

Trivial Dialetheism and the Logic of Paradox

Title variants
Languages of publication
EN
Abstracts
EN
In this paper we explain that the paraconsistent logic LP (Logic of Paradox) promoted by Graham Priest can only be supported by trivial dialetheists, i.e., those who believe that all sentences are dialetheias.
Year
Volume
25
Issue
1
Pages
51-56
Physical description
Dates
online
2015-12-09
Contributors
  • University of Brazil, Rio de Janeiro, Brazil, jyb@jyb-logic.org
  • Visiting Professor, University of California, San Diego, USA
References
  • Becker Arenhart, J.R., “Liberating paraconsistency from contradiction”, Logica Universalis, 9, 4 (2015): 523–544. DOI: 10.1007/s11787-015-0131-y
  • Beziau, J.-Y., “Idempotent full paraconsistent negations are not algebraizable”, Notre Dame Journal of Formal Logic, 39, 1 (1998): 135–139. DOI: 10.1305/ndjfl/1039293025
  • Beziau, J.-Y., “S5 is a paraconsistent logic and so is first-order classical logic”, Logical Investigations, 9 (2002): 301–309.
  • Beziau, J.-Y., “The paraconsistent logic Z. A possible solution to Jaśkowski’s problem”, Logic and Logical Philosophy, 15 (2006): 99–111. DOI: 10.12775/LLP.2006.006
  • Beziau, J.-Y., “Bivalent semantics for De Morgan logic (the uselessness of four-valuedness)”, pages 391–402 in W.A. Carnielli, M.E. Coniglio, and I.M.L. D’Ottaviano (eds.), The many sides of logic, College Publication, London, 2009.
  • Beziau, J.-Y., “History of truth-values”, pages 233–305 in D.M. Gabbay, F.J. Pelletier, and J. Woods (eds.), Handbook of the History of Logic, Vol. 11 “Logic: A history of its central concepts”, Elsevier, Amsterdam, 2012.
  • Beziau, J.-Y., “Round squares are no contradictions (Tutorial on Negation, Contradiction and Opposition)”, in J.-Y. Beziau , M. Chakraborty, S. Dutta (eds.), New Directions in Paraconsistent Logic, Springer, New Delhi, 2016.
  • Beziau, J.-Y., W.A. Carnielli, and D.M. Gabbay (eds.), Handbook of Paraconsistency (Studies in Logic), College Publication, London, 2007.
  • Kleene, S., “On a notation for ordinal numbers”, Journal of Symbolic Logic, 3 (1938): 150–155. DOI: 10.2307/2267778
  • Klement, K., “Propositional logic”, Internet Encyclopedia of Philosophy, 2015. http://www.iep.utm.edu/prop-log/
  • Łukasiewicz, J., “O logice trójwartościowej”, Ruch Filozoficzny, 5 (1920): 170–171.
  • Priest, G., “The logic of paradox”, Journal of Philosophical Logic, 8, 1 (1979): 219–241. DOI: 10.1007/BF00258428
  • Priest, G., and F. Berto, “Dialetheism”, Stanford Encyclopedia of Philosophy, 2013. http://plato.stanford.edu/entries/dialetheism/
  • Pogorzelski, W.A., Notions and theorems of elementary formal logic, Warsaw University, Białystok Branch, Białystok, 1994.
  • Sette, A.M., On the propositional calculus P1, “Notas e comunicacões de matemática”, Vol. 17, Recife, 1971.
  • Wittgenstein, L., “Logisch-philosophische Abhandlung”, Annalen der Naturphilosophie, 14 (1921), 185–262. Translated as Tractatus Logico-Philosophicus, Kegan Paul, London, 1922.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.desklight-55b2077e-703f-47a0-a0de-f3152590fdbf
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.