Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2020 | 3 (101) | 56-71

Article title

Ocena potencjału instrumentów Wspólnej Polityki Rolnej w ochronie wód i bioróżnorodności

Authors

Content

Title variants

EN
Evaluation of the potential of Common Agricultural Policy instruments for water and biodiversity protection

Languages of publication

PL

Abstracts

PL
Efektywność i skuteczność instrumentów Polityki Rolnej w ochronie zasobów zależy w dużej mierze od przeprowadzenia wiarygodnej oceny potencjału ich oddziaływania na środowisko. Przedstawiony w pracy przegląd wskaźników i analiza mechanizmów wdrażania instrumentów WPR w kontekście ochrony wód i bioróżnorodności, wskazuje na znaczący potencjał WPR we wdrażaniu polityki adaptacji i przeciwdziałania zagrożeniom wód i zaniku bioróżnorodności. Do praktyk rolnych posiadających największy wpływ na ochronę zasobów wodnych należy zaliczyć: zalesianie gruntów ornych, zachowanie naturalnych siedlisk, wprowadzanie uprawy konserwującej, systemów rolno-leśnych, zadrzewionych i zadarnionych elementów krajobrazu oraz optymalizacja obsady zwierząt i wypasu. Znaczącą redukcję wymycia biogenów z pól można również osiągnąć poprzez optymalizację aplikacji nawozów. Istotne oszczędności z tytułu użytkowania wody można uzyskać poprzez zastosowanie kroplowych instalacji nawadniających, sterowanych komputerowo. Szczególnie ważne jest wpieranie wielokierunkowej produkcji w gospodarstwach oraz działań, poprawiających jednocześnie świadczenie kilku usług ekosystemowych.
EN
The effciency and effectiveness of Common Agricultural Policy instruments for resources protection depends primarily on reliable assessment of their potential environmental impact. Overview of the environmental indicators, presented in the paper shows significant potential of the CAP instruments for climate change adaptation policies, sustainable management of water and biodiversity loss prevention measures. The most important positive effects are the following practices: afforestation of arable lands, conservation of natural habitats, conservation tillage, agroforestry systems, landscape elements such as meadows or woodlands, stocking density and grazing management. The significant reduction of nutrients leaching can be achieved by optimized application of fertilizers. Water use efficiency is improved in computer-controlled drip-irrigation systems to a considerable extent. It is of great importance to support multifunctional agriculture and mixed farming, which can increase synergies among ecosystem services, provided by farmers.

Year

Issue

Pages

56-71

Physical description

Dates

received
2020-10-15
accepted
2020-10-20

Contributors

author
  • Instytut Uprawy, Nawożenia i Gleboznawstwa – Państwowy Instytut Badawczy

References

  • Aguiar T. R., Rasera K., Parron L. M., Brito A. G., Ferreira M.T. (2015): Nutrient removal effectiveness by riparian buffer zones in rural temperate watersheds: the impact of no-till crops practices, Agricultural Water Management, 149, s. 74-80.
  • Alliance Environnement (2017): Evaluation study of the payment for agricultural practices beneficial for the climate and the environment, Final Report. https://op.europa.eu/en/publication-detail/-/publication/598b81ff-dfbc-11e7-9749-01aa75ed71a1 [dostęp: 15.09.2020].
  • Alliance Environnement (2018): Evaluation study of the impact of the CAP on climate change and greenhouse gas emissions, Final Report. https://op.europa.eu/en/publication-detail/-/publication/29eee93e-9ed0-11e9-9d01-01aa75ed71a1 [dostęp: 15.09.2020].
  • Batary P., Dicks L. V., Kleijn D., Sutherland W. J. (2015): The role of agri‐environment schemes in conservation and environmental management, Conservation Biology, 29(4), s. 1006-1016.
  • Biggs J. (2007): Small-scale Solutions for Big Water Problems, Pond Conservation: The Water habitats Trust, Oxford. https://freshwaterhabitats.org.uk [dostęp: 16.09.2020].
  • Bilotta G. S., Brazier R. E., Haygarth P.M. (2007): The Impacts of Grazing Animals on the Quality of Soils, Vegetation, and Surface Waters in Intensively Managed Grasslands, Advances in Agronomy 94, s. 237-280.
  • Borek R., Faber A., Kozyra J. (2010): Water implications of selected energy crops cultivated on a field scale, Journal of Food, Agriculture & Environment Vol.8, 3&4, s. 1345-1351.
  • Brady M., Hristov J., Hojgard S., Jansson T., Johansson H., Larsson C., Nordin I., Rabinowicz E. (2017): Impacts of Direct Payments Lessons for CAP post-2020 from a quantitative analysis, Agri-Food Economics Centre Report.
  • Braskerud B. C. (2002a): Factors affecting nitrogen retention in small constructed wetlands treating agricultural non-point source pollution, Ecological Engineering, 18(3), s. 351-370.
  • Braskerud B. C. (2002b): Factors affecting phosphorus retention in small constructed wetlands treating agricultural non-point source pollution, Ecological Engineering, 19(1), s. 41-61.
  • Busch G. (2012): GIS-based tools for regional assessments and planning processes regarding potential environmental effects of poplar SRC, BioEnergy Research No 5 (3), s. 584-605.
  • Collins A. L., Anthony S. G., Hawley J., Turner T. (2009): The potential impact of projected change in farming by 2015 on the importance of the agricultural sector as a sediment source in England and Wales, Catena, 79, s. 243-250.
  • Díaz-Pinés E., Molina-Herrera S., Dannenmann M., Braun J., Haas E., Willibald G., Arias-Navarro C., Grote R., Wolf B., Saiz G., Aust C., Schnitzler J-P., Butterbach-Bahl K. (2016): Nitrate leaching and soil nitrous oxide emissions diminish with time in a hybrid poplar short-rotation coppice in southern Germany, GCB Bioenergy No 9 (3), s. 613-626.
  • Eory V., MacLeod M., Topp C. F. E., Rees R. M., Webb J., McVittie A., Wall E., Borthwick F., Watson C., Waterhouse A., Wiltshire J., Bell H., Moran D., Dewhurst R. (2015): Review and update the UK Agriculture Marginal Abatement Cost Curve to assess the greenhouse gas abatement potential for the 5th carbon budget period and to 2050, Final Report. https://www.theccc.org.uk [dostęp: 10.07.2020].
  • ETO (Europejski Trybunał Obrachunkowy) (2016): Zwiększenie skuteczności zasady wzajemnej zgodności i uproszczenie związanego z nią systemu nadal stanowi wyzwanie. Sprawozdanie specjalne. Luksemburg. https://www.eca.europa.eu/Lists/ECADocuments/SR16_26/SR_CROSS_COMPLIANCE_PL.pdf [dostęp: 16.09.2020].
  • ETO (Europejski Trybunał Obrachunkowy) (2017): Zazielenianie – bardziej złożony system wsparcia dochodów, który nie jest jeszcze skuteczny pod względem środowiskowym. Sprawozdanie specjalne. Luksemburg. https://www.eca.europa.eu/Lists/ECADocuments/SR17_21/SR_GREENING_PL.pdf [dostęp: 16.09.2020].
  • ETO (Europejski Trybunał Obrachunkowy) (2020): Różnorodność biologiczna na użytkach rolnych – wspólna polityka rolna nie zapobiegła pogorszeniu sytuacji. Sprawozdanie specjalne. Luksemburg. https://www.eca.europa.eu/Lists/ECADocuments/SR20_13/SR_Biodiversity_on_farmland_PL.pdf [dostęp: 16.09.2020].
  • Gamrat R., Gałczyńska M., Sotek Z., Stasińska M. (2018): Phytodiversity of midfield balks (environmental islands) in a selected area in North-West Poland. Applied Ecology and Environmental Research, 16 (4), s. 4541-4558.
  • Gocht A., Ciaian P., Bielza M., Terres J. M., Röder N., Himics M., Salputra, G. (2016): Economic and environmental impacts of CAP greening: CAPRI simulation results, EUR 28037 EN, Joint Research Centre, European Commission http://publications.jrc.ec.europa.eu/repository/bitstream/JRC102519/jrc%20report_cap%20greening-capri%20v12.pdf [dostęp: 10.06.2020].
  • Hansen K., Rosenqvist L., Vesterdal L., Gundersen P. (2007): Nitrate leaching from three afforestation chronosequences on former arable land in Denmark, Global Change Biology, 13 (6), s. 1250-1264.
  • Hansen S., Frøseth R., Stenberg M., Stalenga J., Olesen J. E., Krauss M., Radzikowski P., Doltra J., Shahid N., Torfinn T., Pappa A., Watson C. (2019): Review of causes and sources of N2O emissions and NO3 leaching from organic arable crop rotations, Biogeosciences, 16 (14), s. 2795-2819.
  • Herzon I., Helenius J. (2008): Agricultural drainage ditches, their biological importance and functioning, Biological Conservation, 141(5), s. 1171-1183.
  • IGER (2002): Scoping the potential of farm ponds to provide environmental benefits – Final Project Report, Defra project ES0109. Defra, London. http:// https://randd.defra.gov.uk [dostęp: 15.06.2020].
  • Jaskulska R., Jaskulska J. (2017): Efficiency of old and young shelterbelts in reducing the contents of nutrients in Luvisols, Agriculture, Ecosystems & Environment, 240, s. 269-275.
  • JRC (Joint Research Centre) (2013): River Basin Network on Water Framework Directive and Agriculture, EUR 25978 – Joint Research Centre – Institute for Environment and Sustainability. http://publications.jrc.ec.europa.eu/repository/bitstream/JRC81647/lb-na-25978-en-n.pdf [dostęp: 10.09.2020].
  • Kędziora A. (2010): Landscape management practices for maintenance and enhancement of ecosystem services in a countryside, Ecohydrology & Hydrobiology 10 (2-4), s. 133-152.
  • Kędziora A., Kujawa K., Gołdyn H., Karg J., Bernacki Z., Kujawa A., Bałazy S., Oleszczuk M., Rybacki M., Arczyńska-Chudy E., Tkaczuk C., Łęcki R., Szyszkiewicz-Golis M., Pińskwar P., Sobczyk D., Andrusiak J. (2012): Impact of land-use and climate on biodiversity in an agricultural landscape [w:] Biodiversity enrichment in a diverse world, Red. GA Lameed. In-Tech, s. 281-336.
  • Kronvang B., Bechmann M., Lundekvam H., Behrent H., Rubaek G. H., Schoumans O. F., Syversen N., Andersen H. E., Hoffmann C. C. (2005): Phosphorus losses from agricultural areas in river basins: effects and uncertainties of targeted mitigation measures, Journal of Environmental Quality, 34, s. 2129-2144.
  • Lal R. (2009): Soil quality impacts of residue removal for bioethanol production, Soil and Tillage Research, 102, 2, s. 233-241.
  • Langeveld H., Quist-Wessel F., Dimitriou I., Aronsson P., Baum C., Schulz U., Bolte A., Baum S., Köhn J., Weih M., Gruss H., Leinweber P., Lamersdorf N., Schmidt-Walter P., Berndes G. (2012): Assessing environmental impacts of short rotation coppice (SRC) expansion: model definition and preliminary results, BioEnergy Research No 5 (3), s. 621-635.
  • Lind L., Hasselquist E. M., Laudon H. (2019): Towards ecologically functional riparian zones: A meta-analysis to develop guidelines for protecting ecosystem functions and biodiversity in agricultural landscapes, Journal of Environmental Management, 249, 109391.
  • Louwagie G., Gay S. H., Burrell A. (2009): Addressing soil degradation in EU agriculture: relevant processes, practices and policies. Report on the project ‘Sustainable Agriculture and Soil Conservation (SoCo), JRC scientific and technical reports. Joint Research Centre, European Commission. http://publications.jrc.ec.europa.eu/repository/bitstream/JRC50424/jrc50424.pdf
  • Müller B., Johnson L., Kreuer D. (2017): Maladaptive outcomes of climate insurance in agriculture, Global Environmental Change, 46, s. 23-33.
  • Newell Price J. P., Harris D., Chadwick D. R., Misselbrook T. H., Taylor M., Williams J.R., Anthony S. G., Duethmann D., Gooday R. D., Lord E. I., Chambers B. J. (2011): Mitigation Methods – User Guide. An Inventory of Mitigation Methods and Guide to their Effects on Diffuse Water Pollution, Greenhouse Gas Emissions and Ammonia Emissions from Agriculture, Prepared as part of Defra project WQ0106. 158 pp. http://randd.defra.gov.uk [dostęp: 17.06.2020].
  • Novak S. M., Fiorelli J. L. (2010): Greenhouse gases and ammonia emissions from organic mixed crop-dairy systems: a critical review of mitigation options, Agron. Sustain. Dev., 30, s. 215-236.
  • Palma J. H., Graves A. R., Bunce R. G. H., Burgess P. J., De Filippi R., Keesman K. J., van Keulen H., Liagre F., Mayus M., Moreno G., Reisner Y., Herzog F. (2007): Modeling environmental benefits of silvoarable agroforestry in Europe, Agriculture, ecosystems & environment, 119 (3-4), s. 320-334.
  • Panagos P., Borelli P., Meusberger K., Alewell C., Lugato E., Montanarella L. (2015a): Estimating the soil erosion cover-management factor at the European scale, Land Use Policy No 48, s. 38-50.
  • Panagos P., Borrelli P., Meusburger K., van der Zanden E. H., Poesen J., Alewell C. (2015b): Modelling the effect of support practices (P-factor) on the reduction of soil erosion by water at European scale, Environmental Science & Policy 51, s. 23-34.
  • Passy P., Garnier J., Billen G., Fesneau C., Tournebize J. (2012): Restoration of ponds in rural landscapes: Modelling the effect on nitrate contamination of surface water (the Seine River Basin, France). Science of the Total Environment, 430, s. 280-290.
  • Pe’er G., Bonn A., Bruelheide H., Dieker P., Eisenhauer N., Feindt P. H., Hagerdorn G., Hansjurgens B., Herzon I., Lomba A., Marquard E., Moreira F., Nitsch H., Oppermann R., Perino A., Rider N., Schleyer C., Schindler S., Wolf C., Zinngrebe Y., Lakner S. (2020): Action needed for the EU Common Agricultural Policy to address sustainability challenges, People and Nature 2, s. 305–316.
  • Posthumus H., Deeks L. K., Rickson R. J., Quinton J. N. (2015): Costs and benefits of erosion control measures in the UK, Soil Use and Management, 31, s. 16-33.
  • Quemada M., Baranski M., Nobel-de Lange M., Vallejo A., Cooper J. (2013): Meta-analysis of strategies to control nitrate leaching in irrigated agricultural systems and their effects on crop yield, Agriculture, Ecosystems & Environment. 174, s. 1-10.
  • Reeves D. W. i in. (2005): Conservation tillage in Georgia: Economics and water resources, Proceedings of the 2005 Georgia Water Resources Conference, s. 665-668. http://hdl.handle.net/1853/47510 [dostęp: 15.09.2020].
  • Rickson J., Deeks L., Posthumus H., Quinton J. (2010): To review the overall costs and benefits of soil erosion measures and to identify cost-effective mitigation measures. Final report to Defra Sub-Project C of Defra Project SP1601: Soil Functions, Quality and Degradation – Studies in Support of the Implementation of Soil Policy.
  • Rosenqvist L., Hansen K., Vesterdal L., van der Salm C. (2010): Water balance in afforestation chronosequences of common oak and Norway spruce on former arable land in Denmark and southern Sweden, Agricultural and forest Meteorology, 150 (2), s. 196-207.
  • Ryszkowski L., Karg J., Glura M. (2009): Influence of agricultural landscape structure on diversity of insect communities [w]: Mander i in. (2009): Multifunctional land use: meeting future demands for landscape goods and services. http://link.springer.com/chapter/10.1007/978-3-540-36763-5_8 [dostęp: 15.09.2020].
  • Schmidt-Walter P., Lamersdorf N. P. (2012): Biomass production with willow and poplar Short Rotation Coppices on sensitive areas—the impact on nitrate leaching and groundwater recharge in a drinking water catchment near Hanover, Germany, Bio- Energy Research No 5 (3), s. 546-562.
  • Serra-Wittling C., Molle B. (2017): Evaluation des économies d’eau à la parcelle réalisables par la modernisation des systèmes d’irrigation, IRSTEA. http://g-eau.fr [dostęp 16.09.2020].
  • Shore M., Jordan P., Mellander P.E., Kelly-Quinn M., Melland A.R. (2015): An agricultural drainage channel classification system for phosphorus management, Agriculture, Ecosystems and Environment, 199, s. 207-215.
  • Soane B. D., Ball B. C., Arvidsson J., Basch G., Moreno F., Roger-Estrade J. (2012): No-till in northern, western and south-western Europe: A review of problems and opportunities for crop production and the environment, Soil & Tillage Research 118, s. 66-87.
  • Tonitto C., David M. B., Drinkwater L. E. (2006): Replacing bare fallows with cover crops in fertilizer-intensive cropping systems: A meta-analysis of crop yield and N dynamics, Agriculture, Ecosystems & Environment No. 112 (1), s. 58-72.
  • Tosti G., Benincasa P., Farneselli M., Tei F., Guiducci M. (2014): Barley–hairy vetch mixture as cover crop for green manuring and the mitigation of N leaching risk, European Journal of Agronomy No 54, s. 34-39.
  • Tsonkova P., Böhm C., Quinkenstein A., Freese D. (2012): Ecological benefits provided by alley cropping systems for production of woody biomass in the temperate region: a review, Agroforestry Systems, 85 (1), s. 133-152.
  • Underwood E., Tucker G.M. (2016): Ecological Focus Area choices and their potential impacts on biodiversity, Institute for European Environmental Policy, London, http:// https://ieep.eu/publications/ecological-focus-areas-what-impacts-on-biodiversity [dostęp: 10.09.2020].
  • Wiltshire J., Martineau H., Webb J., Shamier N., Bell H., Rees B. (2014): Assessment of the Effectiveness, Impact and Cost of Measures to Protect Soils, Defra project SP1313. http://sciencesearch.defra.gov.uk [dostęp: 16.09.2020].
  • Varah A., Jones H., Smith J., Potts S. G. (2020): Temperate agroforestry systems provide greater pollination service than monoculture, Agriculture, Ecosystems & Environment, 301, 107031.
  • Xu S., Jagadamma S., Rowntree J. (2018): Response of Grazing Land Soil Health to Management Strategies: A Summary Review, Sustainability, 10 (12), s. 4769.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.desklight-5d43bb16-536f-4045-ab06-05d13de417bd
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.