PL EN


2012 | 895 | 19-33
Article title

Zastosowanie metody najbliższych sąsiadów do redukcji szumu losowego w ekonomicznych szeregach czasowych

Title variants
EN
The Application of the Method of Nearest Neighbours to Reduce Random Noise in an Economic Time Series
Languages of publication
PL
Abstracts
EN
The real time series (xt) can be written in an additive form, as: xt = yt + εt, where (yt) denotes the deterministic part of the series, and (εt) the stochastic part, which is associated with the presence of random noise in the time series, representing the observational noise, system noise, or a combination thereof. The reduction of random noise allows the properties of the series (yt) to be known based on analysis of series (xt). The nearest neighbours method is derived from the theory of nonlinear dynamic systems and was developed to predict the time series, but it can also be used to reduce noise. Here the time series (yt) is built on the basis of the nearest neighbours of vectors xtm of a reconstructed state space dynamic system, which is described with the use of the time series (xt). In this paper, the nearest neighbours method is used to reduce random noise in an economic time series. Empirical studies are conducted based on actual data of an economic nature.
Contributors
References
  • Brock W.A., Hsieh D.A., LeBaron B. [1991], Nonlinear Dynamics, Chaos, and Instability: Statistical Theory and Economic Evidence, The MIT Press, Cambridge.
  • Frank M., Stengos T. [1988], Chaotic Dynamics in Economics Time Series, „Journal of Economic Surveys”, No 2.
  • Guégan D., Leroux J. [2009], Forecasting Chaotic Systems: The Role of Local Lyapunov Exponents, „Chaos, Solitons & Fractals”, Vol. 41.
  • Kantz H., Schreiber T. [2004], Nonlinear Time Series Analysis, 2nd ed., Cambridge University Press, Cambridge.
  • Kennel M.B., Brown R., Abarbanel H.D.I. [1992], Detecting Embedding Dimension for Phase Space Reonstruction Using a Geometrical Construction, „Physical Review” Series A, 45.
  • Kyrtsou C., Terraza M. [2002], Stochastic Chaos or ARCH Effects in Stock Series? A Comparative Study, „International Review of Financial Analysis” 11.
  • Mayfield E.S., Mizach B. [1992], On Determining the Dimension of Real-Time Stock-Price Data, „Journal of Business & Economic Statistics”, Vol. 10, No 3.
  • Nowiński M. [2007], Nieliniowa dynamika szeregów czasowych, Wydawnictwo Akademii Ekonomicznej we Wrocławiu, Wrocławiu.
  • Orzeszko W. [2005], Identyfikacja i prognozowanie chaosu deterministycznego w ekonomicznych szeregach czasowych, PWE, Warszawa.
  • Ott E. [1997], Chaos w układach dynamicznych, WNT, Warszawa.
  • Rosenstein M.T., Collins J.J., De Luca C.J. [1993], A Practical Method for Calculating Largest Lyapunov Exponents from Small Data Sets, „Physica” Series D, Vol. 65.
  • Shintani M., Linton O. [2004], Is There Chaos in the World Economy? A Nonparametric Test Using Consistent Standard Errors, „International Economic Review”, Vol. 44, No 1.
  • Stawicki J. [1993], Metody filtracji w modelowaniu procesów ekonomicznych, Wydawnictwo Uniwersytetu Mikołaja Kopernika, Toruń.
  • Zawadzki H. [1996], Chaotyczne systemy dynamiczne. Elementy teorii i wybrane zagadnienia ekonomiczne, Zeszyty Naukowe Akademii Ekonomicznej w Katowicach, Katowice.
  • Zhang J. et al. [2004], Time Series Prediction using Lyapunov Exponents in Embedding Phase Space, „Computers and Electrical Engineering” 30.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.desklight-5dc74c21-8a31-49db-80d1-f0cb833ab001
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.