PL EN


2013 | 23 | 2 | 25-41
Article title

Determining preference orders based on a majority margin matrix

Selected contents from this journal
Title variants
Languages of publication
EN
Abstracts
EN
When determining a group ranking, the information about experts’ opinions may be sometimes incomplete. In such cases, usually only the outranking matrix L or the majority margin matrix ΔL is available. Debord [2] presented a technique for constructing the set of experts’ opinions based on the majority margin matrix. The method proposed – simple and efficient – provides a set of experts’ opinions consistent with the given majority margin matrix.
Year
Volume
23
Issue
2
Pages
25-41
Physical description
Contributors
author
  • Systems Research Institute, Polish Academy of Sciences, ul. Newelska 6, 01-447 Warszawa, Poland, hanna.bury@ibspan.waw.pl
References
  • BURY H., WAGNER D., Group judgement with ties. A position-based approach, Badania Operacyjne i Decyzje, 2009, 4, 7–26.
  • DEBORD B., Caractérisation des matrices des préférences nettes et méthodes d’aggrégation associées, Mathématiques et Sciences Humaines, 1987, 97, 5–17.
  • LAMBORAY C., A comparison between the prudent order and the ranking obtained with Borda's, Copeland’s, Slater’s and Kemenys rules, Mathematical Social Sciences, 2007, 54, 1–16.
  • NURMI H., Comparing voting systems, Kluwer, Dordrecht 1987.
  • SAARI D.G., Basic Geometry of Voting, Springer Verlag, Berlin 1995.
  • SCHULZE M., A new monotonic, clone-independent, reversal symmetric, and Condorcet-consistent single-winner election method, Social Choice and Welfare, 2011, 36, 267–303.
  • TIDEMAN T.N., Independence of clones as a criterion for voting rules, Social Choice and Welfare, 1987, 4, 185–206.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.desklight-61911cf6-086f-405d-a1d2-23eb2f646ebc
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.