PL EN


2011 | 7 (14) | 173-197
Article title

The primer on arbitrage conceptions in economics: their logics, roots and some formal models (historical and bibliographical notes)

Content
Title variants
Languages of publication
EN
Abstracts
EN
The paper makes up the first part of a larger study devoted to arbitrage ideas, models and pricing methodology in spirit of “no arbitrage” (or fairness or transparency) demands.The work – as a whole – is entitled “Arbitrage in Economics and Elsewhere – Facts Well Known and Less Known” and consists of three papers. In the present essay we intentionally interweave “loose (informal) variations on themes” (of arbitrage theories, their applications and connotations) with (brief) demonstrations of selected formal models and some more rigorous mathematical technicalities. Some efforts are made to highlight significant economic aspects as well as to reveal a piece of mathematical “machinery” hidden behind the stories told. Nevertheless, the introductory character of the current paper causes the descriptive, philosophical and historical elements to prevail: we invoke very old roots such as Aristotle‟s or Aquinata‟s thoughts and then follow Cournot, Walras and Keynes works, up to the crucial paper of Miller, Modigliani. Along the way the very deep considerations on the coherency of subjective probability systems are mentioned – “the probabilistic core” of an arbitrage/no arbitrage questions (thoughts of Ramsey and de Finetti). Subsequently, the basics (finite state-space) of the modern, martingale (no arbitrage) modeling (originated by Harrison, Kreps, Pliska) is presented, as well as the “factor-type” schema of the arbitrage pricing theorem (Ross‟s conception). The role played by the supplemented bibliography should be also pointed out. It significantly enters the planned communication. The author‟s aim was to provide the (selected) basis, and “vocabulary” which will be useful for reading the entirety of the “trilogy” – the presented foreword really constitutes a kind of “a bibliographical note”.
Year
Issue
Pages
173-197
Physical description
Contributors
References
  • Albrecht P. (1992). Premium calculation without arbitrage. Astin Bulletin. Vol. 22. No. 2. Pp. 247-254.
  • Artzner Ph., Delbaen F., Eber J.M., Heath D. (1999). Coherent measures of risk. Mathematical Finance. Vol. 9. No. 3. Pp. 203-228.
  • Astic F., Touzi N. (2007). No arbitrage conditions and liquidity. Journal of Mathematical Economics. Vol. 43. Pp. 692-708.
  • Back K., Pliska S. (1991). On the fundamental theorem of asset pricing with and infinite state space. Journal of Mathematical Economics. Vol. 20. Pp. 1-18.
  • Banach S. (1932). Théorie des opérations functionnelles linéaires. Monografie Matematyczne. Warszawa.
  • Beja A. (1971). The structure of the cost of capital under uncertainty. Review of Economic Studies. Vol. 38. Pp. 359-368.
  • Bernardo A.E., Ledoit O. (2000). Gain, loss and asset pricing. Journal of Political Economy, Vol. 108. No. 1. Pp. 144-172.
  • Bernstein P. (1998). Intelektualna historia Wall Street. WIG Press. Warszawa. Björk T. (2004). Arbitrage Theory in Continuous Time. Oxford University Press. Oxford.
  • Black F., Scholes M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy. Vol. 81. Pp. 637-659.
  • Bołt T., Miłobędzki P. (1991). Model arbitrażu cenowego. Study within the project KBN (PB2511-1-91).
  • Chamberlain G. (1983). Funds, factors and diversification in the Arbitrage Pricing Theory. Econometrica. Vol. 51. Pp. 1305-1323.
  • Chamberlain G., Rothschild M. (1983). Arbitrage, factor structure, and meanvariance analysis on large markets. Econometrica. Vol. 51. Pp. 1281-1304.
  • Chambers R.G., Quiggin J. (2008). Narrowing the no-arbitrage bounds. Journal of Mathematical Economics. Vol. 44. Pp. 1-14.
  • Chichilnisky G. (1994). Social diversity, arbitrage, and gains from trade: A unified perspective as resource allocation. The American Economic Review (papers and proceedings). Vol. 84. No. 2. Pp. 427-434.
  • Chichilnisky G. (1995). Limited arbitrage is necessary and sufficient for the existence of a competitive equilibrium with or without short sales. Economic Theory. Vol. 5. Pp. 79-107.
  • Clark S.A. (1993). The valuation problem in Arbitrage Price Theory. Journal of Mathematical Economics. Vol. 22. Pp. 463-478.
  • Clark S.A. (2000). Arbitrage approximation theory. Journal of Mathematical Economics. Vol. 33. Pp. 167-181.
  • Cochrane J.H., Saá-Requejo J. (2000). Beyond arbitrage: Good-deal asset price bounds in incomplete markets. Journal of Political Economy. Vol. 108. No. 1. Pp. 79-119.
  • Connor G. (1984). A Unified Beta Pricing Theory. Journal of Economic Theory. Vol. 34. Pp. 13-31.
  • Cournot A. (1838). Recherches Sur les Principes Mathematiques de la Théorie de Richesses. Paris.
  • Courtault J.-M., Delbaen F., Kabanov Y., Stricker Ch. (2004). On the law of one price. Finance and Stochastics, Vol. 8. Pp. 525-530.
  • Cox J., Ross S. (1976). A survey of some new results in Financial Option Pricing Theory. Journal of Finance. Vol. 31. No. 1. Pp. 384-402.
  • Dalang R.C., Morton A., Wilinger C. (1990). Equivalent martingale measures and no-arbitrage in stochastic securities market model. Stochastics and Stochastic Reports. Vol. 29. Pp. 185-201.
  • Delbaen F. (2002). Coherent risk measures on general probability spaces. In: K. Sandman et al. (Eds.). Advances in Finance and Stochastics. Springer-Verlag. Berlin.
  • Delbaen F., Rasonyi M., Stricker Ch. (Eds.) (2009). Optimality and Risk – Modern Trends in Mathematical Finance. The Kabanov Festchrift. Springer-Verlag. Berlin–Heidelberg.
  • Delbaen F., Schachermayer W. (1994). A general version of the fundamental theorem of asset pricing. Mathematische Annalen. Vol. 300. Pp. 463-520.
  • Delbaen F., Schachermayer W. (2006). The Mathematics of Arbitrage. Springer. Berlin-Heidelberg.
  • Duffie D. (1986), Stochastic equilibria: Existence, spanning number, and the “No Expected Gain From Trade Hypothesis”. Econometrica. Vol. 54. No. 5. Pp. 1161-1183.
  • Duffie D. (1992). Dynamic Asset Pricing Theory. Princeton University Press. Princeton.
  • Dybvig P., Ross S. (1982). Portfolio efficient sets. Econometrica. Vol. 50. No. 6. Pp. 1525-1546.
  • Dybvig P., Ross S. (1987). Arbitrage. In: J. Eatwell, M. Milgate, P. Newman (Eds.). The New Palgrave Dictionary of Economics. Vol. 1. Macmillan. London. Pp. 100-106.
  • Einzig P. (1937). The Theory of Forward Exchange. Macmillan. London.
  • Ellerman D.P. (1984). Arbitrage Theory: A mathematical introduction. SIAM Review. Vol. 26. No. 2. Pp. 241-261.
  • Farkas J. (1901). Über die Theorie der einfachen Unglaichungen. Journal für die reine und angewandte Mathematik. Vol. 124. Pp. 1-27.
  • de Finetti B. (1937). Forsight: Its logical laws, its subjective sources. Annales de L‟Institute Henri Poincaré. Vol. 7.
  • Föllmer H., Schied A. (2002). Stochastic Finance – Introduction in Discrete Time. Walter de Gruyter. Berlin–New York.
  • Frittelli M. (2000). Introduction to a Theory of Value Coherent with the No-Arbitrage Principle. Finance and Stochastics. Vol. 4. No. 3. Pp. 275-297.
  • Gilles G., Leroy S. (1991). On the Arbitrage Pricing Theory. Economic Theory. Vol. 1. Pp. 213-229.
  • Gordan P. (1973). Über di Auflösung linearer Gleichungen mit reelen Koefficienten. Math. Annalen. Vol. 6. Pp. 23-28.
  • Green R.C., Srivastava S. (1986). Risk aversion and arbitrage. Journal of Finance. Vol. 40. Pp. 915-921.
  • Harrison J.M., Kreps D.A. (1979). Martingales and arbitrage in multiperiod securities markets. Journal of Economic Theory. Vol. 20. Pp. 381-408.
  • Harrison J.M., Pliska S. (1981). Martingales and stochastic integrals in the Theory of Continuous Trading. Stochastic Processes and their Applications. Vol. 11. Pp. 215-260.
  • Hart O.D. (1974), On the existence of equilibrium in a securities model. Journal of Economic Theory. Vol. 9. Pp. 293-311.
  • Huberman G. (1982). A simple approach to Arbitrage Pricing Theory. Journal of Economic Theory. Vol. 28. Pp. 183-191.
  • Ingersoll J.E. (1984). Some results in the Theory of Arbitrage Pricing. Journal of Finance. Vol. 29. Pp. 1021-1039.
  • Instrumenty pochodne (1997). Edited by P. Kobak, K. Życzkowski, M. Capiński. Materiały Sympozjum Matematyki Finansowej. Uniwersytet Jagielloński. 10-12 kwietnia 1997. Kraków.
  • Jajuga K. (2003). Miary ryzyka rynkowego. Rynek Terminowy. Pp. 115-121. Jakubowski J., Palczewski A., Rutkowski M., Stetton Ł. (2006). Mathematyka finansowa – instrumenty pochodne. WNT. Warszawa.
  • Jarrow R. (1986). The relationship between arbitrage and first order stochastic dominance. Journal of Finance. Vol. 41. Pp. 915-921.
  • Jaschke S., Küchler U. (2001). Coherent risk measures and good-deal bounds. Finance and Stochastics. Vol. 5. Pp. 181-200.
  • Jouini E., Kallal H. (1995). Martingale and arbitrage in securities markets with transaction costs. Journal of Economic Theory. Vol. 66. Pp. 178-197.
  • Kabanov J.M., Kramkow D.O. (1994). Bolszyje finansowyje rynki: asimptoticzeskij arbitraż i kontigualnost. Teoria Wierojatnostiej i jejo primienienija. Wypusk 1. Tom 39. Pp. 222-229.
  • Kabanov J.M., Stricker Ch. (2001). A teachers’ note on no-arbitrage criteria. Séminaire de Probabilités XXXV, Springer Lecture Notes in Mathematics 1755. Pp. 149-152.
  • Kabanov Y. (2001). Arbitrage theory, In: Handbooks in Mathematical Finance. Option Pricing: Theory and Practice. Pp. 3-42.
  • Kesley D., Milne F. (1995). The arbitrage pricing theorem with non-expected utility preferences. Journal of Economic Theory. Vol. 65. No. 2. Pp. 557-573.
  • Kesley D., Yalcin E. (2007). The arbitrage pricing theorem with incomplete preferences. Mathematical Social Sciences. Vol. 50. No. 1. Pp. 90-104.
  • Keynes J.M. (1923). A Treat of Monetary Reform. Macmillan. London.
  • Khan M.A., Sun Y. (2001). Asymtptic arbitrage and APT with or without measuretheoretical structures. Journal of Economic Theory. Vol. 101. Pp. 222-251.
  • Kim Ch. (1998). Stochastic dominance, Pareto optimality, and equilibrium asset pricing. Review of Economic Studies. Vol. 65. Pp. 341-356.
  • Kirchhoff G. (1847). Über die Auflosung der Gleichungen, auf Weiche Man bei der Untersachung der Linearen Verteilung Galvanischer Sstrome Gefuhrt Wird. Annalen der Physik and Chemie. Vol. 72. Pp. 497-508.
  • Koopmans T.C., Reiter S. (1951). A model of transportation. In: T.C. Koopmans (Ed.). Activity Analysis of Production and Allocation. John Wiley. New York. Pp. 222-259.
  • Kreps D.M. (1981). Arbitrage and equilibrium in economics with infinitely many commodities. Journal of Mathematical Economics. Vol. 8. Pp. 15-35.
  • Krzyżewski K. (2003). On the Arbitrage Pricing Theory. In: T. Trzaskalik (Ed.). Modelowanie preferencji a ryzyko 03. Prace Naukowe Akademii Ekonomicznej. Katowice. Pp. 257-272.
  • Kuziak K. (2000). Arbitraż w teorii i praktyce rynków finansowych. Unpublished doctoral dissertation. Akademia Ekonomiczna we Wrocławiu. Wrocław.
  • Lawley D.N., Maxwell A.E. (1963). Factor Analysis as a Statistical Method. Butterworths. London.
  • Le Cam L. (1960). Locally asymptotically normal families of distributions. Univ. California Publ. Statist. Vol. 3. Pp. 37-98.
  • LeRoy S.F., Werner J. (2001). Principles of Financial Economics. Cambridge University Press.
  • Malawski A., Ćwięczek I. (2005). Od równowagi ogólnej do równowagi rynków finansowych. In: J. Pociecha (Ed.). Modelowanie i prognozowanie zjawisk społeczno-gospodarczych. UE. Kraków.
  • Merton R. (1973). Theory of Rational Option Pricing. Bell Journal of Economics and Management Science. Vol. 4. Pp. 141-183.
  • Milne F. (1988). Arbitrage and diversification in a general equilibrium asset economy. Econometrica. Vol. 56. No. 4. Pp. 815-840.
  • Minkowski H. (1910/1986). Geometrie der Zahlen. Leipzig und Berlin (2nd ed.).
  • Modigliani F., Miller M.H. (1958). The cost of capital, corporate finance and the Theory of Investment. American Economic Review. Vol. 48. Pp. 261-297.
  • Morishima M. (1977). Walras’ Economics. Cambridge University Press. Cambridge. Page F.H. (1996). Arbitrage and asset prices. Mathematical Social Sciences. Vol. 31. No. 3. Pp. 183-208.
  • Pliska S. (2005). Wprowadzenie do matematyki finansowej – modele z czasem dyskretnym. WNT. Warszawa.
  • Ramsey F.P. (1926/1964). Truth and probability. In: H.E. Kyburg, H.E. Smoklar (Eds.), Studies in Subjective Probability. Krieger. Huntington. New York.
  • Reisman H. (1988). A general approach to the Arbitrage Pricing Theory. Econometrica. Vol. 56. Pp. 473-476.
  • Riesz F. (1909). Sur les opérations functionnelles linéaires. C.R. Paris. 149. Pp. 974-977.
  • Rogers L.C.G. (1995). Equivalent martingale measures and no-arbitrage. Stochastics and Stochastic Reports. Vol. 51. Nos. 1-2. Pp. 41-49.
  • Roll R. (1977). An analytical formula for unprotected American call options on stock with known dividends. Journal of Financial Economics. Vol. 5. Pp. 251-258.
  • Ross S.A. (1976). Options and efficiency. Quarterly Journal of Economics. Vol. 90. Pp. 75-89.
  • Ross S.A. (1976). The Arbitrage Theory of capital asset pricing. Journal of Economic Theory. Vol. 13. Pp. 341-360.
  • Roussas G.G. (1976). Kontigualnost wierojatnostnych mier, Primienienja k statistikie.“ Mir”. Moskwa.
  • Schachermayer W. (1992). A Hilbert space proof of the fundamental theorem of asset pricing in finite discrete time. Insurance: Mathematics and Economics. Vol. 11. No. 4. Pp. 249-257.
  • Shanken J. (1992). The current state of the Arbitrage Pricing Theory. The Journal of Finance. Vol. XLVII. No. 4. Pp. 1569-1574.
  • Stiemke E. (1915). Über positive Lösungen homogener linearer Gleichungen. Math. Annalen. Vol. 76. Pp. 340-342.
  • Stoica G. (2006). Relevant coherent measures of risk. Journal of Mathematical Economics. Vol. 42. Pp. 794-806.
  • Stoll H.R. (1969). The relationships between put and call option prices. Journal of Finance. Vol. 31. Pp. 319-332.
  • Stricker Ch. (1990). Arbitrage et lois de martingale. Ann. Just. Henri Poincare. Vol. 26. No. 3. Pp. 451-460.
  • Szegö G. (2002). Measures of risk. Journal of Banking and Finance. Vol. 26. Pp. 1253-1272.
  • Taylor E. (1991). Historia rozwoju ekonomiki. T. 1. Wyd. “Delfin”. Lublin.
  • Varian H.R. (1987). The arbitrage principle in financial economics. Journal of Economic Perspectives. Vol. 1. No. 2. Pp. 55-72.
  • Walras L. (1926). Elements of Pure Economics. Augusus Kelly. New York (orriginally 1874-1877).
  • Werner J. (1987). Arbitrage and the existence of competitive equilibrium. Econometrica. Vol. 55. Pp. 1403-1418.
  • Werner J. (1997). Arbitrage, bubbles and valuation. International Economic Review. Vol. 38. No. 2. Pp. 453-464.
  • Weron A., Weron R. (1998). Inżynieria finansowa. WNT. Warszawa.
  • Yan J.A. (1980). Caractérisation d’une classe d’ensemles convexes de L1 et H1. Séminaire de Probabilité XIV, Lect. Notes Math. 784. pp. 220-222.
  • Zabczyk J. (2004). Ważniejsze wydarzenia w teorii procesów stochastycznych. Roczniki PTM Seria II. Wiadomości Matematyczne. T. XL. Pp. 77-95.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.desklight-64f45c84-c4eb-40e2-a84d-4f562052cfcb
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.